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Preface xi

Preface

The question “do I have enough memory in my system” or “how much memory do

I need to run my application” often arises from customers and Systems Engineers.

Questions like these are typically followed by a short period of silence, mostly due

to a lack of information about how memory is used in Solaris.

This paper is aimed at providing the necessary information to answer these type of

questions.

The first chapter is a summary of the most commonly asked questions about

memory utilization in Solaris, and serves as a quick introduction to the tools and

techniques that can be used.

The rest of the paper covers memory topics in more detail. The first two chapers

“Sizing and Capacity Planning” and “Memory Analysis & Tools” provide a step by

step process for measuring memory utilization and sizing and applications memory

requirements. The last two chapters “Solaris Memory Architecture” and “I/O via

the VM System” provide a detailed technical description of the architecture of the

Solaris memory system.

Please send comments and suggestions to Richard.McDougall@Eng.Sun.COM

Who Should Read This White Paper

This paper is written for customers and partners of Sun, including Solaris System

Administrators, Vendors and Developers.

It is not intended to be a all-encompassing document on the architecture of Solaris,

rather a means to understand how to measure, predict and influence the behavior of

the memory system.
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Related Material

Books
■ Sun Performance & Tuning - Adrian Cockcroft & Richard Pettit 1998
■ Configuration and Capacity Planning - Brian Wong, 1997
■ The Magic Garden - Goodheart & Cox, 1993

Papers
■ Solaris Virtual Memory Implementation - Rob Gingel, 1987
■ The Bunyip Memory Tools Documentation - 1997

How This Paper Is Organized

Chapter 1, “Solaris Memory Quickstart” is an introduction to Solaris memory

behaviour, measurement and sizing.

Chapter 2, “Sizing and Capacity Planning” presents a methodology for sizing

applications and predicting the memory requirements of a system.

Chapter 3, “Memory Analysis & Tools” explains the various tools that are available

to measure memory behavior in Solaris. Both Solaris commands and unbundled

tools are covered.

Chapter 4, “Solaris Memory Architecture” is a detailed technical description of the

Solaris Virtual Memory system.

Chapter 5, “I/O via the Virtual Memory System” details how I/O is performed in

Solaris, and how it interacts with the Virtual Memory system.
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What Typographic Changes Mean

The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,

or words to be emphasized

Read Chapter 6 in User’s Guide. These

are called class options.

You must be root to do this.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell

prompt

$

Bourne shell and Korn shell

superuser prompt

#
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Solaris MemoryQuickstart 1

This chapter is a quick overview some of the most frequently asked questions

about how applications use memory in a Solaris system.

Unix Memory Sizing
Accurate memory sizing and measurement tools are rarely found on Unix

platforms, which often leads to confusion about the real memory requirements

of an application.

Often, comparisons are made between applications running on Solaris and

other Unix implementations, and the application appears to use significantly

more memory on Solaris.

What is really happening is that Solaris provides a wider range of operating

system features, and hence has significantly larger shared system libraries.

Without the ability to distinguish between the shared library and application

memory, the Solaris application appears to use more memory.

In reality the actual memory usage of each application is very similar to other

platforms.

Solaris now has the ability to look at the shared and non-shared portions of

memory, which allows more accurate sizing of applications, without guessing

at the shared component. This functionality was introduced at Solaris 2.6 with

the pmap command as discussed later in this chapter.
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1

How is my memory being used?
The first thing to observe in a system is where the memory has been allocated.

In a broad perspective, we are interested in knowing-

• The total amount of physical memory available

• How much memory is being used for file buffering

• How much memory is being used for the kernel

• How much memory my applications are using

• How much memory is free

To answer all of the above, we need to use MemTool. MemTool is discussed in

detail in Chapter 2. The latest version of MemTool can be obtained by sending

a request to memtool-request@chessie.eng.sun.com. These tools are provided free,

but are not covered by normal Sun support.

MemTool is provided in pkgadd format. Simply log in as root, untar the

package and use the pkgadd command to install.

The tools are installed into the /opt/RMCmem/bin directory.

The MemTool version at time of writing was 3.5.

Total Physical Memory

The amount of total physical memory can be ascertained by looking at the

output of the Solaris prtconf command.

File Buffering Memory

The buffer cache uses available free memory to buffer files on the filesystem.

On most systems, the amount of free memory is almost zero as a direct result

of this.

# prtconf

System Configuration:  Sun Microsystems  sun4u
Memory size: 384 Megabytes
System Peripherals (Software Nodes):
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1

To look at the amount of file buffer cache, you will need to use the MemTool

package. The MemTool mempscommand can be used to dump the contents of

the buffer cache.

A summary of the buffer cache memory is available with the MemTool prtmem
command.

Kernel Memory

The amount of kernel memory can be found by using the Solaris sar
command, and summing all of the alloc columns. The output is in bytes.

Free Memory

Free memory is almost always zero, because the buffer cache grows to

consume free memory. Free memory can be measured with the vmstat

command.

The first line of output from vmstat is an average since boot, so the real free

memory figure is available on the 2nd line. The output is in kilobytes.

# prtmem
Total Physical Memory:    384 Megabytes
Buffer Cache Memory:      112 Megabytes
Kernel Memory:            63 Megabytes
Free Memory:              17 Megabytes

# sar -k 1 1

SunOS williams 5.5 Generic sun4m    08/22/97

12:12:49 sml_mem   alloc   fail   lg_mem     alloc  fail   ovsz_alloc  fail
12:12:52 3158016 18032129      0 39298671 18023923      3 27898314      0
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1

Do I have a memory shortage ?
A critical component of performance analysis is ascertaining where the

bottlenecks are. Detecting memory bottlenecks is not quite as straight forward

as measuring processor and disk, and requires a few more steps to arrive at a

conclusion.

To determine if there is a memory shortage, we need to-

• Determine if the applications are paging excessively because of a memory

shortage

• Determine if the system could benefit by making more memory available for

file buffering

The Solaris memory system counts paging activity generated by both file I/O

and application paging with the same counters. This means that the paging

activity we can observe with the Solaris vmstat is not a fail-safe method of

identifying memory shortages.

We can however use vmstat to rule out any question of a memory shortage in

some circumstances.

The steps I recommend taking to ascertain if there is a memory shortage are:-

• Use vmstat to see if the system is paging. If not, then there is no chance of a

memory shortage. Excessive paging activity is evident by activity in the

scan-rate (sr) and page-out (po) columns, where values are constantly non-

zero.

• Look at the swap device for activity. If there is application paging, then the

swap device will have I/O’s queued to it. Any significant I/O to the swap

device means that there is application paging, and is a sure sign of memory

shortage.

# vmstat 3
 procs     memory            page            disk          faults      cpu
 r b w   swap  free  re  mf pi po fr de sr f0 s2 s3 s4   in   sy   cs us sy id
 0 0 0  81832 74792   0  12 75  4 93  0 36  0  1  1  1  265 1940  303  5  1 93
 0 0 0 560248 12920   0   0  0  0  0  0  0  0  0  0  0  217  872  296  0  0 100
 0 0 0 560248 12920   0   0  0  0  0  0  0  0  0  0  0  205  870  296  0  0 99
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• Use the MemTool to measure the distribution of memory in the system. If

there is a application memory shortage, then the filesystem buffer cache size

will be very small (i.e. less than 10 percent of the total memory available).

How much memory is my Application using?
Knowing how much memory your application is using is vital to predicting

how much memory your application will need when running more users.

Using MemTool, it is possible to look at how much memory a process is using,

including how much is shared between each copy of the program.

If you have Solaris 2.6, then you can use the pmap command, now that the

MemTool’s pmem functionality has been integrated into Solaris.

Lets take a look at the ksh command, running on a desktop system.

# /usr/proc/bin/pmap -x 1069
  -- or --
# /opt/RMCmem/bin/pmem 1069

1069:   /bin/ksh
Address   Kbytes Resident Shared Private Permissions       Mapped File
00010000     184     184     184       - read/exec         ksh
0004C000       8       8       8       - read/write/exec   ksh
0004E000      40      40       -      40 read/write/exec    [ heap ]
EF5E0000      16      16       8       8 read/exec         en_AU.so.1
EF5F2000       8       8       -       8 read/write/exec   en_AU.so.1
EF600000     592     576     576       - read/exec         libc.so.1
EF6A2000      24      24       8      16 read/write/exec   libc.so.1
EF6A8000       8       8       -       8 read/write/exec    [ anon ]
EF6C0000      16      16      16       - read/exec         libc_psr.so.1
EF6D0000      16      16      16       - read/exec         libmp.so.2
EF6E2000       8       8       8       - read/write/exec   libmp.so.2
EF6F0000       8       8       -       8 read/write/exec    [ anon ]
EF700000     448     376     368       8 read/exec         libnsl.so.1
EF77E000      32      32       8      24 read/write/exec   libnsl.so.1
EF786000      24       8       -       8 read/write/exec    [ anon ]
EF790000      32      32      32       - read/exec         libsocket.so.1
EF7A6000       8       8       8       - read/write/exec   libsocket.so.1
EF7A8000       8       -       -       - read/write/exec    [ anon ]
EF7B0000       8       8       8       - read/exec/shared  libdl.so.1
EF7C0000     112     112     112       - read/exec         ld.so.1
EF7EA000      16      16       8       8 read/write/exec   ld.so.1
EFFFC000      16      16       -      16 read/write/exec    [ stack ]
--------  ------  ------  ------  ------
total Kb    1632    1520    1368     152
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The output of the pmap command shows us that the ksh process is using 1520k

of real memory. Of this, 1368k is shared with other processes on the system, via

shared libraries and executables.

The pmap command also shows us that the ksh process is using 152k of

private memory. This is the amount of memory that this process is using which

is not shared. Another instance of ksh will only consume 152k of memory

(assuming it’s private memory requirements are similar).
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SizingandCapacityPlanning 2

An important component in systems administration is knowing and

understanding how to size applications, so that a capacity planning

methodology can be developed.

Developing a sizing methodology for memory is relatively straight forward

once the characteristics of an application are known.

The key to understanding the memory requirements of a particular system is to

break the resources into a system wide category, and a per-process category.

The goal of sizing the memory requirements of a system or application is to

minimise paging. On a server system, it is usually possible to eliminate almost

all paging by configuring enough memory to run the required applications.

On a desktop system this is a little harder because of the number of different

applications, who’s sum total memory requirements is often larger than

economically practical for a desktop.

In this chapter we will first look at a simple example, a desktop system,

followed by a more complex server sizing exercise.

Sizing a desktop system
There are several aspects that need to be consider when sizing a desktop

system:-
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• How much memory will the system daemons and libraries use?

• How much Operating system kernel memory is going to be used?

• Which desktop applications do I want to run, and what are their memory

requirements?

The performance trade-off for desktops

Without sufficient memory, an application will stall while page faults wait for

memory to be paged in/out from disk, and will not make full use of the

processor in the system. Because of this, there is a natural trade-off between

memory size and system efficiency.

Valued judgements need to be made about how important system performance

is, i.e. if you purchase the latest 300Mhz system at premium to provide better

performance, you need to ensure that you have sufficient memory so that the

application uses as much CPU as available. On the other hand, if cost is the

most important factor, then a sensible medium must be found between the

ideal memory configuration and an affordable one.

This is a different approach to sizing a server system, where the goal is to

configure more memory than the application requires, and use the excess for

file buffering.

The best memory size for a desktop system can be calculated using the

following methodology, and in most cases will exceed the budget of the

average desktop user. A cost conscious desktop should be sized so that the

most frequently used applications fit into memory without causing paging,

rather than catering for everything at once.

Less frequently used applications will incur paging, but only when switching

between applications.

Of course if you have a big enough budget, then you can purchase enough

memory to run all of your applications at once, avoiding paging all together!

System Daemon Memory Requirements

The system processes are started at boot time, and provide operating system

services to the applications. There are typically 20-30 system processes on a

given system, depending on the types of network services configured.
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A desktop system will typically have the following system processes started at

boot time:

On a desktop system, the system processes typically occupy about 6.7MB. If

more printers are configured, more memory may be required for the lpsched

and lpNet processes.

Table 2-1 System Process Memory Requirements

Process Description Typical Memory

cron Commands run over night daemon 296k

nscd Name service cache daemon 912k

nis NIS or Nisplus deamons 384k

sendmail Mailer daemon 568k

sac Terminal controller 136k

inetd TCP port listener 512k

powerd Power Management daemon 61k

in.rdisc Route discovery daemon 144k

rpcbind RPC registry 416k

syslog System logger 440k

keyserv Kerberos Daemon 72k

vold Volume Manager 616k

lockd NFS Lock Daemon 120k

statd NFS Lock Status Daemon 264k

snmpd SMNP daemon 212k

lpsched Print Spooler 272k

automountd Automounter Daemon 992k

mountd Mount Daemon 208k

utmpd Utmp Deamon 96k

ttymon Console ttymon 192k
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Memory used by system libraries

The system libraries are dynamically linked libraries which reside in /usr/lib.

Although these libraries are mapped into every executable, their memory

requirements are shared between the many processes on the system.

Generally speaking, the Solaris 2.6 shared libraries will take about 12MB.

The amount of memory used by these files can be summarised by using the

MemTool mempscommand. It can also be approximated by summing the size

of the /usr/lib/lib*.so files.
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Of course, if you don’t want to add all of these up you can use a regular

expression to make the job easier :-)

# memps -m |grep “/usr.*\.so”
  1744k  /usr/lib/libc.so.1
   848k  /usr/lib/fn/libfnsp.so.1
   808k  /usr/openwin/lib/libdps.so.5
   784k  /usr/dt/lib/libDtSvc.so.1
   744k  /usr/lib/libfn_spf.so.1
   688k  /usr/lib/libnsl.so.1
   632k  /usr/lib/libC.so.5
   568k  /usr/lib/fn/fn_ctx_onc_fn_nis.so.1
   488k  /usr/lib/fn/fn_ctx_initial.so.1
   456k  /usr/lib/libthread.so.1
   352k  /usr/lib/libxfn.so.2
   304k  /usr/lib/libelf.so.1
   304k  /usr/openwin/lib/X11/fonts/F3/Palatino-Roman.f3b
   288k  /usr/lib/uucp/uuxqt
   288k  /usr/openwin/lib/X11/fonts/F3/Palatino-Italic.f3b
   272k  /usr/openwin/lib/libXext.so.0
   248k  /usr/lib/libresolv.so.2
   248k  /usr/lib/nss_nis.so.1
   240k  /usr/lib/libsocket.so.1
   224k  /usr/lib/libm.so.1
   168k  /usr/lib/ld.so.1
   168k  /usr/lib/libprint.so.2
   168k  /usr/openwin/lib/libdeskset.so.0
   160k  /usr/lib/libbsm.so.1
   128k  /usr/dt/lib/libSDtFwa.so.1
   120k  /usr/openwin/lib/X11/DPS13Fonts.upr
   112k  /usr/lib/libmp.so.2
   112k  /usr/openwin/lib/libSM.so.6
   112k  /usr/lib/libmapmalloc.so.1
   112k  /usr/dt/lib/nls/msg/C
   112k  /usr/lib/libposix4.so.1
   104k  /usr/lib/uucp/uusched
    88k  /usr/lib/nss_xfn.so.1
    88k  /usr/openwin/lib/libdstt.so.0
    88k  /usr/share/lib/terminfo/x/xterm
    72k  /usr/lib/libpthread.so.1
    64k  /usr/openwin/lib/libolgx.so.3
    64k  /usr/lib/libintl.so.1
    56k  /usr/lib/librpcsvc.so.1
    56k  /usr/share/lib/zoneinfo/Australia/South
    56k  /usr/lib/nss_files.so.1
    48k  /usr/openwin/lib/X11/DPSF3Bitmaps.upr
    48k  /usr/lib/locale/en_AU/en_AU.so.1
    40k  /usr/lib/fn
    40k  /usr/lib/libkvm.so.1
    40k  /usr/lib/libaio.so.1
    40k  /usr/openwin/lib/locale/common/xlibi18n.so.2

# prtlibs
Library (.so) Memory:     11856 K-Bytes
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The unattractive looking regular expression shown above takes the output

from mempsand formats each file size into an expression that the bc caclulator

can use.

The later versions of MemTool (3.5 onwards) include the prtlibs command

to do the same.

Note that all of the library names must be able to be resolved to provide an

accurate summary. If not all of the library names are shown, either reboot the

system and use the bunyip module loader in /etc/rc2.d, or run a “find . -
print ” over the directory where the libraries are stored.

Operating System (Kernel) Memory

The amount of memory that the kernel uses on a desktop system is fairly

consistent, and scales with the amount of total physical memory installed.

Table 2-2 Kernel memory required for desktop systems

CDE Memory Requirements

Since Solaris 2.3, the new Common Desktop Environment (CDE) has been

available as alternative desktop for Solaris. At Solaris 2.6, the default desktop

is CDE.

CDE uses significantly more memory than OpenWindows. The absolute

minimum memory required to run CDE is 32MB, and 48MB is more realistic

minimum for a CDE desktop system.

Memory Size Kernel Size

16MB 8MB

32MB 10MB

48MB 11MB

64MB 12MB

96MB 14MB

128MB 15MB

256MB 17MB

384MB 24MB



Sizing and Capacity Planning 27

2

CDE consists of:

• The OpenWindows X Server (Xsun)

• A set of shared libraries which reside in /usr/dt/lib

• The dtlogin (xdm replacement) daemon

• The dtwm window manager

• Various desktop applications

The memory requirements of the CDE processes are shown in the following

table.

Table 2-3 CDE Desktop memory requirements

Process Description Typical Memory

Xsun X Windows Display Server 8120k

dtlogin CDE Login Banner 464k

Xsession Users login session 212k

dtwm CDE Window Manager 2420k

rpc.ttdbserverd Tooltalk Server 264k

dsdm CDE display manager 168k

dtpad -server CDE Textedit server 912k

speckeysd Keyboard Daemon 176k

sdtvolcheck Daemon for cdrom and floppy pop-ups 160k

fbconsole Frame buffer console 104k

dtsession CDE Session manager 1440k

ttsession Tooltalk session 1880k

clock Openwindows Clock 960k

dtfile CDE File Manager 1240k

dtterm CDE Terminal 920k

dtmail CDE Mail Tool 2632k

Total 22072k



28 The Solaris Memory System—May, 1998

2

Total desktop memory requirements

The total memory requirements of a CDE desktop system can be found by

adding the system processes, system libraries, kernel memory and CDE

memory requirements together.

Our example 64MB system is sized as follows:

Table 2-4 CDE Desktop Memory Requirements

If you plan to run other applications, then you will need to add in the memory

requirements of that application.

Use the pmap command to collect the private memory total for the applicaton

in question. If your application executes more than one copy of the same

process, then you will also need to include the resident portion of the binary

text and data segments. These are the first two segment listed with pmap.

For example, a process dump of netscape for Solaris shows that with the

default settings, an additional 11MB of memory is required.

Table 2-5 CDE Desktop with Netscape Memory Requirements

The process dump from Netscape is as follows:

Function Typical Memory

Operating System Kernel 12MB

Operating System Libraries 12MB

CDE Windowing System 22MB

Total 46MB

Function Typical Memory

Operating System Kernel 12MB

Operating System Libraries 12MB

CDE Windowing System 22MB

Netscape Browser 11MB

Total 57MB
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# /usr/proc/bin/pmap -x 1069
  -- or --
# /opt/RMCmem/bin/pmem 1069

/usr/proc/bin/pmap -x 10943
10943:(netscape)
Address   Kbytes Resident Shared Private Permissions       Mapped File
00010000    9992    9992    1184    8808 read/exec         netscape
009E0000     896     880       8     872 read/write/exec   netscape
00AC0000     312      96       -      96 read/write/exec    [ heap ]
EF220000      16       -       -       - -                  [ anon ]
EF224000     128      16       -      16 read/write/exec    [ anon ]
EF244000      16       -       -       - -                  [ anon ]
EF250000      72      24      16       8 read/exec         libICE.so.6
EF270000       8       8       -       8 read/write/exec   libICE.so.6
EF272000       8       -       -       - read/write/exec    [ anon ]
EF280000     592     576     576       - read/exec         libc.so.1
EF322000      24      24       8      16 read/write/exec   libc.so.1
EF328000       8       8       -       8 read/write/exec    [ anon ]
EF330000       8       8       -       8 read/write/exec    [ anon ]
EF340000      16      16      16       - read/exec         libmp.so.2
EF352000       8       8       8       - read/write/exec   libmp.so.2
EF360000      32      24      16       8 read/exec         libSM.so.6
EF376000      16      16       -      16 read/write/exec   libSM.so.6
EF380000     448     400     368      32 read/exec         libnsl.so.1
EF3FE000      32      32       8      24 read/write/exec   libnsl.so.1
EF406000      24       8       -       8 read/write/exec    [ anon ]
EF420000      16      16      16       - read/exec         libc_psr.so.1
EF430000      88      88      88       - read/exec         libm.so.1
EF454000       8       8       8       - read/write/exec   libm.so.1
EF460000      24      16       8       8 read/exec         libresolv.so.1
EF474000      16      16       -      16 read/write/exec   libresolv.so.1
EF480000     432     432     432       - read/exec         libX11.so.4
EF4FA000      24      24       8      16 read/write/exec   libX11.so.4
EF510000      32      32      32       - read/exec         libsocket.so.1
EF526000       8       8       8       - read/write/exec   libsocket.so.1
EF528000       8       -       -       - read/write/exec    [ anon ]
EF530000      72      64      64       - read/exec         libXext.so.0
EF550000       8       8       8       - read/write/exec   libXext.so.0
EF560000      80      80      72       8 read/exec         libXmu.so.4
EF582000       8       8       -       8 read/write/exec   libXmu.so.4
EF584000       8       -       -       - read/write/exec    [ anon ]
EF590000     328     328     328       - read/exec         libXt.so.4
EF5F0000      24      24       8      16 read/write/exec   libXt.so.4
EF5F6000       8       -       -       - read/write/exec    [ anon ]
EF600000    1440    1424    1416       8 read/exec         libXm.so.3
EF776000      72      64       8      56 read/write/exec   libXm.so.3
EF788000       8       -       -       - read/write/exec    [ anon ]
EF7A0000       8       8       -       8 read/write/exec    [ anon ]
EF7B0000       8       8       8       - read/exec/shared  libdl.so.1
EF7C0000     112     112     112       - read/exec         ld.so.1
EF7EA000      16      16       8       8 read/write/exec   ld.so.1
EFFFA000      24      24       -      24 read/write/exec    [ stack ]
--------  ------  ------  ------  ------
total Kb   15536   14944    4840   10104
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Sizing a server application
There are several aspects that need to be considered:-

• What are the per-process memory requirements for this application?

• How many processes will be running?

• How much memory will the binaries and libraries use?

• How much buffer cache should I allow for?

• How much System V shared memory do I need?

• How much Operating system kernel memory is going to be used?

Process Memory Requirements

The most significant portion of memory is usually consumed by the

application processes. Typically, there are a static number of system processes,

and a set of similar processes which are proportional with the number of users.

System Processes

There are several Unix system processes included in this list, such as:-

Table 2-6 System Process Memory Requirements

Process Description Typical Memory

cron Commands run over night daemon 296k

nscd Name service cache daemon 912k

nis NIS or Nisplus deamons 384k

sendmail Mailer daemon 568k

sac Terminal controller 136k

inetd TCP port listener 512k

powerd Power Management daemon 61k

in.rdisc Route discovery daemon 144k

rpcbind RPC registry 416k

syslog System logger 440k

keyserv Kerberos Daemon 72k

vold Volume Manager 616k
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On a small system, the system processes occupy about 3.7MB. Larger server

systems could use more memory, particuly if the name service cache daemon is

configured larger, and/or lpsched has more printers configured.

Background Processes

There is often a large component of memory used by background processes.

These are typically associated with RDBMS engines, queue managers and other

application specific tasks.

The amount of memory used by the background tasks is often independent of

the number of users on the system, so they can be sized separately.

Use pmemor pmap to get the total resident size for the background tasks, and

sum all of the memory used. (The pmap and pmemcommands are described on

page 51).

Per-User processes

The most variable part of the workload is likely to be the per-user application

processes. Most workloads, including database servers, timeshare systems and

middleware clients all have a few processes per client. If you are sizing a

machine without a per-user process load (e.g. NFS Server, Threaded web

server, etc) then this section is not applicable.

lockd NFS Lock Daemon 120k

statd NFS Lock Status Daemon 264k

snmpd SMNP daemon 212k

lpsched Print Spooler 272k

automountd Automounter Daemon 992k

mountd Mount Daemon 208k

utmpd Utmp Deamon 96k

ttymon Console ttymon 192k

Table 2-6 System Process Memory Requirements

Process Description Typical Memory
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The objective is to establish the relationship between the number of users and

the amount of memory required by calculating the private and shared portions

of a sample process.

Using MemTool (or /usr/proc/bin/pmap -x in Solaris 2.6), it is possible to

determine the system-wide and private portions of a process.

The DB2 process following shows a per-process memory dump which

contains both SysV shared memory and large application specific shared

libraries.

System-wide Portion
To calculate the shared portion, use the executable segments from the output of

the pmap command. Don’t bother with common shared libraries found in

/usr/lib, because we will count them elsewhere. If there are shared libraries

specific to the application, then do count them.

In our example we will count the db2sysc executable (which in this case is

very small), and the shared db2 libraries.

We can calculate the system-wide portion as:-

56k (executable) + 15.5MB (libdb2e) = 15.6MB.
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Per-process Portion
The per-process portion is the private portion of the process. In our example,

the private portion of the process is 9.7MB.

Address   Kbytes Resident Shared Private Permissions       Mapped File
00010000      40      40      40       - read/exec         db2sysc
00028000      16      16       8       8 read/write/exec   db2sysc
0002C000     344     168       8     160 read/write/exec    [ heap ]
10000000    4096    4096       -       - read/write/exec/shared  [shmid=0xc401]
4AC00000  553712  553712       -       - read/write/exec/shared  [shmid=0x11c04]
6DF82000       8       8       -       8 read/write/exec    [ anon ]
6E180000     520       8       8       - read/write/exec/shared  [shmid=0xa400]
6ED00000     592     592     592       - read/exec         libc.so.1
6EDA2000      24      24       8      16 read/write/exec   libc.so.1
6EDA8000       8       8       -       8 read/write/exec    [ anon ]
6EDC0000       8       8       -       8 read/write/exec/shared  [ anon ]
6EDD0000      16      16      16       - read/exec         libc_psr.so.1
6EDE0000      16      16      16       - read/exec         libmp.so.2
6EDF2000       8       8       8       - read/write/exec   libmp.so.2
6EE00000       8       8       8       - read/write/exec/shared  [ anon ]
6EE10000     160     128     128       - read/exec         libC.so.5
6EE46000      32      32       8      24 read/write/exec   libC.so.5
6EE4E000      32      16       -      16 read/write/exec    [ anon ]
6EE60000      24      16      16       - read/exec         libresolv.so.1
6EE74000      16      16       8       8 read/write/exec   libresolv.so.1
6EE80000      24      24      24       - read/exec         libposix4.so.1
6EE94000       8       8       8       - read/write/exec   libposix4.so.1
6EEA0000      88      88      88       - read/exec         libthread.so.1
6EEC4000      16      16       8       8 read/write/exec   libthread.so.1
6EEC8000      32      24       -      24 read/write/exec    [ anon ]
6EEE0000      24      24      24       - read/exec         libaio.so.1
6EEF4000       8       8      16      -8 read/write/exec   libaio.so.1
6EEF6000       8       8       -       8 read/write/exec    [ anon ]
6EF00000     448     392     392       - read/exec         libnsl.so.1
6EF7E000      32      32      24       8 read/write/exec   libnsl.so.1
6EF86000      24       8       -       8 read/write/exec    [ anon ]
6EFA0000       8       8       -       8 read/write/exec    [ anon ]
6EFB0000      32      32      32       - read/exec         libsocket.so.1
6EFC6000       8       8       8       - read/write/exec   libsocket.so.1
6EFC8000       8       -       -       - read/write/exec    [ anon ]
6EFD0000      88      64      56       8 read/exec         libm.so.1
6EFF4000       8       8      16      -8 read/write/exec   libm.so.1
6F000000   11552   11480    4768    6712 read/exec         libdb2e.0721_threadfix
6FB56000    4216    4152    1576    2576 read/write/exec   libdb2e.0721_threadfix
6FF74000     112      48      24      24 read/write/exec    [ anon ]
6FFA0000       8       8       8       - read/exec/shared  libw.so.1
6FFB0000       8       8       8       - read/exec/shared  libdl.so.1
6FFC0000     112     112     112       - read/exec         ld.so.1
6FFEA000      16      16       8       8 read/write/exec   ld.so.1
EFFF8000      32      32       -      32 read/write/exec    [ stack ]
--------  ------  ------  ------  ------
total Kb  576688  575632    8080    9744
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In our DB2 example, there is just one process per user. Take care to include

other per-user processes such as in.telnetd, /bin/sh , etc.

The total amount of private memory per user can later be multiplied by the

number of users to arrive at the total private memory. It can also be

extrapolated to perform what-if’s. For example, if another 100 DB2 clients were

connected to our system, we know that 970MB of memory will be required.

Memory used by system libraries

The amount of memory used by system libraries is fairly static. This is because

we have already taken into account the private portion of the libraries in the

per-process section.

The portion of the libraries that we have not accounted for is the shared library

files, which mostly live in /usr/lib.

Generally speaking, the shared libraries will take about 15MB on a server, and

25MB on a desktop system running CDE.

The amount of memory used by these files can be summarised by using the

MemTool mempscommand. It can also be approximated by summing the size

of the /usr/lib/lib*.so files.
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Of course, if you don’t want to add all of these up you can use a regular

expression to make the job easier :-)

# memps -m |grep “/usr.*\.so”
  1744k  /usr/lib/libc.so.1
   848k  /usr/lib/fn/libfnsp.so.1
   808k  /usr/openwin/lib/libdps.so.5
   784k  /usr/dt/lib/libDtSvc.so.1
   744k  /usr/lib/libfn_spf.so.1
   688k  /usr/lib/libnsl.so.1
   632k  /usr/lib/libC.so.5
   568k  /usr/lib/fn/fn_ctx_onc_fn_nis.so.1
   488k  /usr/lib/fn/fn_ctx_initial.so.1
   456k  /usr/lib/libthread.so.1
   352k  /usr/lib/libxfn.so.2
   304k  /usr/lib/libelf.so.1
   304k  /usr/openwin/lib/X11/fonts/F3/Palatino-Roman.f3b
   288k  /usr/lib/uucp/uuxqt
   288k  /usr/openwin/lib/X11/fonts/F3/Palatino-Italic.f3b
   272k  /usr/openwin/lib/libXext.so.0
   248k  /usr/lib/libresolv.so.2
   248k  /usr/lib/nss_nis.so.1
   240k  /usr/lib/libsocket.so.1
   224k  /usr/lib/libm.so.1
   168k  /usr/lib/ld.so.1
   168k  /usr/lib/libprint.so.2
   168k  /usr/openwin/lib/libdeskset.so.0
   160k  /usr/lib/libbsm.so.1
   128k  /usr/dt/lib/libSDtFwa.so.1
   120k  /usr/openwin/lib/X11/DPS13Fonts.upr
   112k  /usr/lib/libmp.so.2
   112k  /usr/openwin/lib/libSM.so.6
   112k  /usr/lib/libmapmalloc.so.1
   112k  /usr/dt/lib/nls/msg/C
   112k  /usr/lib/libposix4.so.1
   104k  /usr/lib/uucp/uusched
    88k  /usr/lib/nss_xfn.so.1
    88k  /usr/openwin/lib/libdstt.so.0
    88k  /usr/share/lib/terminfo/x/xterm
    72k  /usr/lib/libpthread.so.1
    64k  /usr/openwin/lib/libolgx.so.3
    64k  /usr/lib/libintl.so.1
    56k  /usr/lib/librpcsvc.so.1
    56k  /usr/share/lib/zoneinfo/Australia/South
    56k  /usr/lib/nss_files.so.1
    48k  /usr/openwin/lib/X11/DPSF3Bitmaps.upr
    48k  /usr/lib/locale/en_AU/en_AU.so.1
    40k  /usr/lib/fn
    40k  /usr/lib/libkvm.so.1
    40k  /usr/lib/libaio.so.1
    40k  /usr/openwin/lib/locale/common/xlibi18n.so.2

# prtlibs
Library (.so) Memory:     11856 K-Bytes
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The unattractive looking regular expression shown above takes the output

from mempsand formats each file size into an expression that the bc calculator

can use.

The later versions of MemTool (3.5 onwards) include the prtlibs command

to do the same.

Note that all of the library names must be able to be resolved to provide an

accurate summary. If not all of the library names are shown, either reboot the

system and use the bunyip module loader in /etc/rc2.d, or run a “find . -
print ” over the directory where the libraries are stored.

Buffer Cache Memory

Sizing the buffer cache is somewhat more difficult. There is no fixed size of

memory required for a buffer, it’s really sized by the payback between cost of

additional memory and the performance gained by having a larger buffer.

A general rule of thumb is to use about 2% of the size of the dataset. For

example, a 10GB database should have about 200MB of buffer cache.

If the database is on RAW filesystems, then buffer cache is not required for this,

however the same amount of memory should be allocated for the shared-

memory buffer used by the database. If your database is on RAW, then you

should still plan to leave about 10% of the total memory free for UFS buffer

cache, which will be used by system processes, logfiles, and any other

components that are on filesystems.

You can look at the amount of memory currently being used by the buffer

cache by using the MemTool prtmem command. This does however include

shared libraries and/or binaries, which as we saw earlier can be observed

using the memps -m command.

On our example system, prtmem shows that there is about 110MB of

miscellaneous UFS files in the buffer cache, of which 11MB is binaries and

libraries.
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System V Shared Memory

Most RDBMS systems use some form of shared memory, either for

syncronisation between the various processes, or for a private buffer cache. In

the cases where shared memory is used for a private buffer cache, the shared

segment can be quite large.

The size of the shared memory segment for database systems is usually

decided by the database administrator, because it closely reflects the database

tuning parameters.

If your are not sure how much System V memory you are using, use ipcs as

discussed on page 50 to look at the size of the System V Shared memory

segments.

In our example, we have 560MB of System V Shared Memory.

Operating System (Kernel) Memory

The amount of memory that the kernel uses varies significantly, based on the

size of the tunable parameters.

A lot of the tuneable parameters are set at boot in proportion with the amount

of physical RAM in the system.

As a general rule of thumb, if all of the parameters are standard, you can allow

about 15% of physical RAM for the kernel.

In addition to this, you may need to allow for increased tunables. The

following table provides a list of some common tunables, and the amount of

memory that will be required for each.

Table 2-7 Kenel Memory Required by Tuneables

Tuneable Description Memory Required

ncsize Directory name lookup cache ncsize*60 bytes

ufs_ninode UFS Inode cache ufs_ninode*336 bytes



38 The Solaris Memory System—May, 1998

2

In addition to tunables, some facilities use more memory if they are worked

harder. The streams facility follows this behavior. If your system is handling a

lot of TCP connections, with high transfer rates, then it is likely that streams

could use significantly more memory. Be default, streams uses about 2MB, but

this could easily expand to 10MB with heavy usage.

Summary - Sizing our DB2 example

In our examples, we looked at a 2GB system running DB2. We saw that this

system had a combination of processes, application shared libraries and shared

System V memory.

We can summarise the memory requirements for this system running 100 users

by collating all of the information so far.

The example is shown in the table.

Table 2-8 Memory Sizing Rules and Example

Item Rule Example Comment

System Processes +system 10MB We have allowed a little more than

the usual 3.7MB

System Libraries +system_libraries 15MB This is fairly consistent with most

servers

User-Processes +proc_user * nusers

+proc_systemwide

9.7MB *100=970MB

15.6MB

This is a abnormally large

application.

Background Processes +background_private

+background_shared

27MB

Buffer Cache Memory +buffer_cache 100MB The database is running on RAW, so

we just reserve some memory for

other UFS specific requirements.
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System V Shared Memory +shared_memory 560MB The DB2 DBA set parameters that

generated a 560MB shared memory

segment.

Kernel Memory +kernel_memory 150MB Because this is a RAW database

system, there has been no tuning of

the DNLC or UFS inode caches,

hence we use the default 15%.

Total 1847MB

Table 2-8 Memory Sizing Rules and Example

Item Rule Example Comment
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MemoryAnalysis&Tools 3

To understand the memory behavior and requirements of a particular system,

we need to be able to measure the activity and operation of the Virtual

Memory system.

In this chapter, we will look at the current tools bundled with Solaris, and

some other unbundled tools that allow us to look a little deeper into the Virtual

Memory system.

There are two basic objectives when looking at memory in Solaris, one is to

find out where all of the memory is allocated, and the other is to look at

memory (or paging) activity.

Following is a list of the tools discussed, and the capabilities of each.

Table 3-1 Memory related tools

Tool Origin Memory Utilization Paging Activity

vmstat /usr/bin Basic Fair

ps /usr/bin Process Size -

swap /usr/bin Swap allocation -

wsm Engineering/free Working Set Size Read/Writes per page

ipcs /usr/bin SysV Shared Memory -

MemTool Engineering/free Process/Buffer Cache

and System

File paging stats
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The vmstat and swap commands

Figure 3-2 vmstat output

pmap /usr/proc/bin Process Address Map -

pmap -x /usr/proc/bin (2.6) Process Memory Util. -

crash /usr/bin/crash Kernel Memory Util. -

dbx SPARCworks Memory Leaks -

Table 3-1 Memory related tools

Tool Origin Memory Utilization Paging Activity

# vmstat 3
  procs     memory            page            disk          faults      cpu
 r b w   swap  free  re  mf  pi  po  fr de sr f0 s2 s3 s4   in   sy   cs us sy id
 0 0 0  42200  5312   0  12 126  40 135  0  0  0  2  2  2  242 4373  285 12  9 80
 0 0 0 400952  3168   0   1   5   0   0  0  0  0  0  0  0  318 6584  319 11  3 86
 0 1 0 401064  2616   4  74 466 168 210  0  0  0  0  0  0  545 6124  623 12 10 78
 0 0 0 401096  2000   5  21 125   5  32  0  0  0  0  0  0  448 6521  375 18  8 74
 0 0 0 400944  2096   0   6   0  45  82  0  0  0  0  0  0  252 6814  346 11  3 86

r = run queue length
b = processes blocked waiting for I/O
w = idle processes which have been swapped at some time

swap = free and unreserved swap available in kbytes
free = free memory measured in pages

re = pages reclaimed from the free list
mf = minor faults - the page was in memory but was not mapped
pi = pages paged in from filesystem or swap device
po = pages paged out to filesystem or swap device
fr = pages that have been destroyed or freed
de = pages freed after writes

s0-s3 = disk I/O’s per second for disk 0-3

in = interrupts/second
sy = system calls/second
cs = process context swtiches/second

us = user cpu time
sy = kernel cpu time
id = idle+wait cpu time
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The vmstat utility in Solaris is very similar to the utility that shipped with

early versions of BSD Unix. It provides a summary of various functions within

the system, including system wide free memory, paging counters, summarized

disk activity, system calls and cpu utilization.

The output of vmstat is shown above with explanations of the various fields.

Lets take a look at how we can use vmstat to get a quick summary of what is

happening on our system.

Note that the first line of output from vmstat shows a summary since boot,

followed by the output over the last 3 seconds for each additional line.

The first stop is to look at system wide resources, such as free memory and

swap. Systems should have ample swap space available, and in this case we

can see that our system has 400MB of swap space free. If it gets down to a few

megabytes, process startup will fail.

Free Memory

Our vmstat example shows that we have 2096KB of memory free, which seems

awful low for a system with 128MB. As discussed in the introduction, this is

because the VM system has used all of the free memory for UFS caching, which

means that free memory has fallen to approximately the value of lotsfree .

Whilst free memory is almost zero, there may be plenty of memory available

for applications.

We will look at how to observe how much of our memory is being used for

UFS caching later when we discuss MemTool.

Swap Space Utilization

The vmstat command reports the amount of swap space that is free (not

reserved or allocated). This is the most useful measure.

Swap space is reserved first, then may be allocated. When a process requests

memory via malloc() for example, the address space is created, but real pages

are not allocated to it. At this point, swap space is reserved, but not allocated.

The first time each page is accessed, a real page of memory is allocated to it

and swap space is also allocated.
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Figure 3-1 Stages of Swap space reservation

In our example we can see that 191MB of swap has been allocated, and 20MB

is reserved but not used. This particular system is a desktop with about 20

applications running, hence the large amount of allocated swap space.

The second swap command shows us a list of the swap devices. These can be

either partitions on storage devices or files in a regular filesystem. Note that

free space on the swap device does not equal free swap available. This is

because Solaris uses an extra layer in-between the swap vnodes and the

physical swap device.

malloc() ZFOD (Zero filled page on demand)

Pageout

1. Page is
malloc()ed,

2. Page is
accessed -
real memory

3. Page is paged
out by pageout()
due to a memory
shortage and swap space

Reserved Allocated

are  allocated.

swap space is
reserved.

# swap -s
total: 191504k bytes allocated + 20392k reserved = 211896k used, 400088k available

# swap -l
swapfile             dev  swaplo blocks   free
/dev/dsk/c0t0d0s1   32,121     16 1048784 690672
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The extra layer is the swapfs filesystem, which uses a combination of physical

swap space and free memory to create a larger than life swap device. This is

particuly useful for diskless boot, where there are no physical swap devices

during the boot process.

The /tmp partition is also uses the swapfs filesystem, which means that the

size of /tmp varies accordingly with the amount of free swap space. An easy

check on free swap space is df -k /tmp . Note that filling the /tmp filesystem

will also cause the system to run low on swap space, which will could

adversely affect applications and/or performance.

Paging Counters

The vmstat paging counters provide us with some insight as to how busy VM

system is, and if there are any memory resource issues.

The first thing to look for in the paging counters is the scan rate. The scan rate

is the number of pages per second that the pageout scanner is scanning. If the

scan rate is consistently zero, then the pageout scanner is not running, and

there must be greater than lotsfree free memory. If the scan rate is zero, then

there is no memory shortage.

A non-zero scan rate does not always mean there is cause for concern.

Remember that as reads and writes occur, pages are taken from the free list and

eventually the amount of free memory will fall below lotsfree. In this case, the

pageout scanner will be invoked to free up memory, hence a non-zero scan

rate.

Systems with little or no filesystem I/O

On a system with only a small amount of UFS I/O, it is possible to use the

page counters to ascertain if there is a memory shortage. A system with a

memory shortage will cause excessive page faults can be noted by excessive

amount of pageout’s(po) and a high scan rate (sr).
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Systems with a lot of filesystem I/O

A system with data on filesystems (as opposed to raw) and a large working set

size where the data frequently accessed is larger than the amount of physical

memory will also cause excessive paging, and high scan rate numbers. This

makes it much more difficuly to determine if there is a memory shortage.

If there is a true memory shortage, then the majority of these page faults will

incur I/O to the swap device.

Monitoring the swap device I/O is an accurate method of identifying memory

shortages. It is strongly recommended that the swap partition be placed on

separate partition to make this clearly visible. (On pre 2.6 systems it is

necessary to put swap on a separate device, because there are no per-partition

statistics available).

If your system does have a lot of filesystem I/O, then we may also use a

different method to verify if there is sufficient memory in the system. This will

be discussed when MemTool is covered.

Table 3-3 Detailed description of vmstat Paging Counters

Counter Description

re Page Reclaims - If a page was on the free-cache list, but still

contained data that was needed from a new request that it can

be taken from the free list and remapped.

mf Minor Faults - If the page is already in memory, then a minor

fault simply re-establishes the mapping to it

pi Page In’s - A page in will occur whenever a page is brought

back in from the swap device, or into the new buffer cache. A

page-in will cause a process to stop execution until the page is

read from disk, and will adversely affect the processes

performance.

po Page Out’s - A page out will be counted whenever a page is

written and freed. Often this is as a result of the pageout

scanner, fsflush or file close.

fr Page Free’s - The number of pages that the pagescanner has

freed.

de The number of pages freed as a result of a pageout.

sr The number of pages scanned by the page scanner.
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Kernel Memory
The amount of memory allocated to the kernel can be found by using the sar
and crash commands.

Using Sar to look at Kernel Memory Allocation

The sar command can be used to get a coarse grained view of kernel memory

allocation.

Table 3-4 Sar command fields

Fields Description

sml_mem The amount of virtual memory in bytes KMA has for the small

pool.

alloc The amount of memory in bytes allocated to this pool.

fail The number of requests for small amounts of memory that

were not satisfied (failed)

lg_mem The amount of virtual memory in bytes KMA has for the large

pool.

alloc The amount of memory in bytes allocated to this pool.

fail The number of requests for small amounts of memory that

were not satisfied (failed)

# sar -k 3 3

SunOS williams 5.5 Generic sun4m    07/22/97

13:02:14 sml_mem   alloc  fail  lg_mem   alloc  fail  ovsz_alloc  fail
13:02:17 1437696 1163452     0 4571136 3685544     0     2297856     0
13:02:20 1437696 1163452     0 4571136 3685544     0     2297856     0
13:02:23 1437696 1163452     0 4571136 3685544     0     2297856     0
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Using crash for detailed kernel memory allocation

The crash command is used to look at data structures in the kernel, either on

a live system or a crash dump. Crash also provides a detailed display of the

kernel memory allocation status, and is useful for looking at the kernel

memory usage on a live system.

Kernel Allocation Methods

The kernel has two methods of allocating memory; either as pageable heap or

wired-down permanent memory. The later is known in the kernel as cache

memory.

Cache memory is used when multiple occurrences of identical sized memory

are required for the same data structure. The kernel allocates physical memory

for these data structures and handles the management associated with the

holes that are left when structures are deallocated.

The kmastat Command

The kmastat command in crash provides a detailed summary of kernel

memory allocation. It shows each type of kmem cache memory, and some

statistics for each.

The amount of memory allocated to each type of kmem cache is indicated in

the mem-in-use column.

At the end of the summary is the oversize, or paged heap memory allocation.

ovsz_alloc The amount of virtual memory in bytes KMA has oversize

requests

alloc The amount of memory in bytes allocated to this pool.

fail The number of requests for small amounts of memory that

were not satisfied (failed)

Fields Description



Memory Analysis & Tools 49

3

# crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> kmastat
                            buf   buf   buf   memory    #allocations
cache name                 size avail total   in use    succeed fail
----------                ----- ----- ----- --------    ------- ----
kmem_magazine_1               8  1006  1020     8192       7607    0
kmem_magazine_3              16   465   510     8192      94018    0
kmem_magazine_7              32   207   255     8192      70361    0
kmem_magazine_15             64   272   381    24576      80862    0
kmem_magazine_31            128     0     0        0          0    0
kmem_magazine_47            192     0     0        0          0    0
kmem_magazine_63            256     0     0        0          0    0
kmem_magazine_95            384     0     0        0          0    0
kmem_magazine_143           576     0     0        0          0    0
kmem_slab_cache              32   230   765    24576      33621    0
kmem_bufctl_cache            16   680  2550    40960     117420    0
kmem_bufctl_audit_cache      96     0     0        0          0    0
kmem_pagectl_cache           16   463   510     8192      14142    0
kmem_alloc_8                  8   218  5100    40960   15486199    0
kmem_alloc_16                16   577  3060    49152    3926197    0
kmem_alloc_24                24   210  1020    24576   10241904    0
kmem_alloc_32                32   248  2295    73728  217807360    0
kmem_alloc_40                40   177   816    32768  218329495    0
kmem_alloc_48                48   180   680    32768    3965748    0
kmem_alloc_56                56    39   290    16384    4476833    0
kmem_alloc_64                64   250   508    32768     392008    0
kmem_alloc_80                80   266   612    49152    9532776    0
kmem_alloc_96                96    45    85     8192  232507209    0
kmem_alloc_112              112    26    72     8192    1055741    0
kmem_alloc_128              128   536  1071   139264  245290152    0
kmem_alloc_144              144     7    56     8192     953967    0
kmem_alloc_160              160    12   306    49152     224277    0
kmem_alloc_176              176    10   184    32768     364206    0
kmem_alloc_192              192   250   504    98304     569160    0
kmem_alloc_208              208   108   351    73728       7292    0
kmem_alloc_224              224    30    36     8192    2611022    0
.
.
authloopback_cache           40   204   204     8192      18490    0
rnode_cache                 432   212   360   163840       4206    0
nfs_access_cache             20   336   340     8192       8596    0
cachefs_cnode_cache        1088    53   195   212992       3441    0
cachefs_async_request        48   170   170     8192     138730    0
cachefs_fscache             592    12    13     8192          1    0
cachefs_filegrp              80   149   204    16384        666    0
cachefs_cache_t             368    21    22     8192          1    0
exi_cache_handle             28     0     0        0         11    0
vfsname_cache                72    56  8249   598016       8193    0
vfsmem_cache                 40  1585  1836    73728       2780    0
----------                ----- ----- ----- --------    ------- ----
permanent                     -     -     -    65536        371    0
oversize                      -     -     -  3891200      12384    0
----------                ----- ----- ----- --------    ------- ----
Total                         -     -     - 20176896 1236762467    0
>



50 The Solaris Memory System—May, 1998

3

Using ipcs to display shared memory
System V Shared memory can be displayed using the ipcs command. This

shows all of the shared memory segments in the system, and the size of each.

System V Shared memory is typically normal paged memory. In the case where

ISM is invoked, (usually this means an RDBMS is being used), then the entire

shared memory segment is permanant physical memory.

# ipcs -mb
IPC status from <running system> as of Tue Jul 22 01:14:37 1997
T         ID      KEY        MODE        OWNER    GROUP      SEGSZ
Shared Memory:
m      41984   0x74080a1f --rw-rw-rw-  dbbench      dba     527096
m      50177   0x61080a1f --rw-------  dbbench      dba    4194304
m      62466   0x62080a1f --rw-------  dbbench      dba    2195456
m      75779   00000000 --rw-------  dbbench      dba      65536
m      72708   00000000 --rw-------  dbbench      dba  567001088
m      45061   00000000 --rw-------  dbbench      dba    1622016
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MemTool - Unbundled Memory Tools
MemTool was developed with the intent of providing a more in-depth look at

where memory has been allocated on a Solaris system. Using these tools it is

possible to find out where every page of memory is, and in what proportions.

MemTool is available as a free, unsupported package from Engineering. Note

that these tools are not supported by the normal Sun support channels.

The latest version of MemTool can be obtained by sending a request to

memtool-request@chessie.eng.sun.com.

Tools provided with MemTool

There are both command line , character, and GUI tools provided with the

MemTool package.

Basis of operation

The basis for the operation of MemTool is a loadable kernel module which uses

the /proc interface to look at the memory allocation of processes and the UFS

buffer cache.

Process memory usage and the pmem command
Traditionally, the only information about process memory utilization was the

virtual memory size and RSSfigure available from the ps command and top .

Table 3-5 MemTool Ultilities

Tool Interface Description

pmem CL Command line process memory map and usage

memps CL Utility to dump process summary and UFS (-m)

memtool GUI Comprehensive GUI for UFS and process memory

mem CUI Curses Interface for UFS and process memory
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The virtual address size of a process often bares no resemblance to the amount

of memory a process is using because it contains all of the unallocated memory,

libraries, shared memory and sometimes hardware devices (in the case of

XSun).

The RSSfigure is a measure of the amount of physical memory mapped into a

process, but often there is more than one copy of the process running, and a

large proportion of a process is shared with another.

MemTool provides a mechanism for getting a detailed look at a processes

memory utilization. MemTool can show how much memory is in-core, how

much of that is shared, and hence how much private memory a process has.

The pmemcommand (or /usr/proc/bin/pmap -x in Solaris 2.6) can be used

to show the memory utilization of a single process.

# pmem 25888
 or
# /usr/proc/bin/pmap -x 25888

25888:  ksh

Addr       Size    Res Shared   Priv Prot               Segment-Name
-------- ------ ------ ----- ------ ----------------- ---------------------------
00010000   184K   184k   184k     0k read/exec          /bin/ksh
0004C000     8K     8k     8k     0k read/write/exec    /bin/ksh
0004E000    40K    40k     0k    40k read/write/exec    [ heap ]
EF5E0000 16K 16k 8k 8k read/exec /usr/lib/locale/en_AU.so.1
EF5F2000 8K 8k 0k 8k read/write/exec /usr/lib/locale/en_AU.so.1
EF600000   592K   568k   560k     8k read/exec          /usr/lib/libc.so.1
EF6A2000    24K    24k     8k    16k read/write/exec    /usr/lib/libc.so.1
EF6A8000     8K     8k     0k     8k read/write/exec
EF6B0000     8K     0k     0k     0k read/write/exec
EF6C0000    16K    16k    16k     0k read/exec          /usr/lib/libc_psr.so.1
EF6D0000    16K    16k    16k     0k read/exec          /usr/lib/libmp.so.2
EF6E2000     8K     8k     8k     0k read/write/exec    /usr/lib/libmp.so.2
EF700000   448K   400k   400k     0k read/exec          /usr/lib/libnsl.so.1
EF77E000    32K    32k     8k    24k read/write/exec    /usr/lib/libnsl.so.1
EF786000    24K     8k     0k     8k read/write/exec
EF790000    32K    32k    32k     0k read/exec          /usr/lib/libsocket.so.1
EF7A6000     8K     8k     8k     0k read/write/exec    /usr/lib/libsocket.so.1
EF7A8000     8K     0k     0k     0k read/write/exec
EF7B0000     8K     8k     8k     0k read/exec/shared   /usr/lib/libdl.so.1
EF7C0000   112K   112k   112k     0k read/exec          /usr/lib/ld.so.1
EF7EA000    16K    16k     8k     8k read/write/exec    /usr/lib/ld.so.1
EFFFC000    16K    16k     0k    16k read/write/exec
EFFFC000    16K                                          [ stack ]
-------- ------ ------  ----- ------
          1632K  1528k  1384k   144k
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The example output from pmemshows the memory map of the /bin/ksh
command. At the top of the output is the executable text and data segments.

All of the executable binary is shared with other processes because it is

mapped read only into each process. A small portion of the data segment is

shared, whilst some is private because of copy-on-write operations (COW).

The next segment in the address space is the heap space, or user application

data. This segment is typically 100% private to a process.

Following the heap space is the shared libraries. Each shared library has a text,

and data segment, which are partially shared.

At the bottom of the process dump is the stack, which like the heap is 100%

private.

A summary of the total Virtual size, resident portion and private memory are

printed at the bottom.

Buffer cache memory
Traditionally there has been no method of showing where the pool of buffer

cache memory has been allocated. MemTool makes this possible by providing a

list of all of the vnode’s in the buffer cache.

The list summarizes the size of each vnode in the buffer cache, and where

possible the real filename. If the real filename cannot be determined, then the

device and inode number are printed for that vnode.

The MemTool kernel module collects filenames as each file is opened or

referenced. If the kernel module has recently been loaded, then not all of the

filenames will be available. The best way to cure this is to use the /etc/rc2.d

script to load the bunyip module at boot, which will capture the first 8192

filenames referenced.

If you have a system with many files, you might like to put the following

statement into /etc/system so that MemTool can store more pathnames. Note

that this uses extra kernel memory, and should be avoided on large sun4d

(SPARCcenter 1000,2000 machines).
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The list of vnode’s in the UFS buffer cache can be displayed with the memps

command, and with the MemTool GUI.

set bunyipmod:vfsname_maxitems = 32768
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Note that in the example, not all filenames were visible. This was because the

MemTool kernel module was loaded on a live system, and had only captured

filenames since the module was loaded.

# memps -m
SunOS devnull 5.6 SunOS_Development sun4u    07/21/97

11:27:03
   Size  Filename
 12152k  /export/home/scott/file1
 10680k  /export/home/scott/file20
  8032k  /2b40001:  370743
  6576k  /15c0007:  709619
  5152k  /export/home/scott/file18
  5056k  /export/home/scott/file11
  3744k  /15c0008:  166191
  3288k  /usr/dt/lib/libXm.so.3
  2456k  /15c0007:  709592
  2376k  /export/home/file8
  2272k  /15c0007:  586146
  2264k  /15c0008:  196636
  2016k  /800078:    5970
  1912k  /usr/openwin/lib/libxview.so.3
  1744k  /export/home/scott/file16
  1720k  /15c0007:  709594
  1696k  /15c0007:  132642
  1504k  /2b40001: 1206281
  1504k  /800078:  106190
  1496k  /2b40001: 1204243
  1448k  /15c0007:  709611
  1392k  /export/home/scott/file19
  1264k  /usr/lib/libc.so.1
  1256k  /80007b:  182313
  1200k  /15c0007:  132666
  1096k  /800078:  100213
  1096k  /usr/openwin/lib/libX11.so.4
  1088k  /15c0007:  586141
  1080k  /usr/openwin/lib/libtt.so.2
  1072k  /15c0007:  709632
  1056k  /15c0007:    8844
  1032k  /2b40001:  929861
  1000k  /800078:  200260
   952k  /export/local/bin/perl
   880k  /usr/dt/lib/libDtSvc.so.1
   880k  /15c0007:  709610
   856k  /6167c1ac:       0
   856k  /usr/openwin/lib/libXt.so.4
   800k  /15c0008:    7231
   752k  /80007b:  113922
   720k  /800078:   82526
   .
   .
   .
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Using the MemTool GUI

The MemTool GUI interface provides an easy method of invoking most of the

functionality of the MemTool kernel interfaces.

Invoke the GUI as the root user to see all of the process and file information.

There are three basic modes on the MemTool GUI, Buffer cache memory,

Process memory, and a Process/Buffer cache mapping matrix.

Buffer Cache Memory
The initial screen shows the contents of the Buffer Cache memory.

The Buffer Cache Memory display shows each entry in the UFS Buffer cache.

The fields shows are as follows:-

Table 3-6 Buffer Cache Fields

Field Description

Resident The amount of physical memory that this file has associated

with it.

Used The amount of physical memory that this file has mapped into

a process segment or SEGMAP. Generally the difference

between this and the resident figure is what is on the free list

associated with this file.

Shared The amount of memory that this file has in memory that is

shared with more than one process

Pageins The amount of minor and major pagein’s for this file

Pageouts The amount of pageouts for this file

Filename The filename of the VNODE or if not known the device and

inode number in the format 0x0000123:456

# /opt/RMCmem/bin/memtool &
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Figure 3-2 MemTool GUI - Buffer Cache Memory

The GUI will only display the largest 250 files. A status panel at the top of the

display shows the total amount of files and the number that have been

displayed.

Process Memory
The second mode of the MemTool GUI is the process memory display. Click on

the “Process Memory” checkbox at the left of the GUI to select this mode.
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The process memory display shows the process table with a memory summary

for each process. Each line of the process table is the same as the per-process

summary from the pmemcommand.

Figure 3-7 MemTool GUI - Process Memory
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The fields for the Process Memory display are as follows:-

The individual process map for a process can be selected by clicking on one of

the process entries.

Process Matrix
The process matrix shows the relationship between processes and mapped

files. Across the top of the display is the list of processes that we viewed in the

process memory display, and down the side is a list of the files which are

mapped into these processes.

Each column of the matrix shows the amount of memory mapped into that

process for each file, with an extra row for the private memory associated with

that process.

The matrix can be used to show the total memory usage of a group of

processes. By default, the summary box at the top right hand corner shows the

memory used by all of the processes displayed.

A group of processes can be selected with the left mouse button, and then

summarized by hitting the selection button at the top-middle of the display. The

full display can be returned by selecting the all/filt button.

Table 3-8 Process Memory Fields

Field Description

PID Process ID of process

Virtual The virtual size of the process, including swapped out and

unallocated memory

Resident The amount of physical memory that this process has,

including shared binaries, libraries etc

Shared The amount of memory that this process is sharing with

another process, i.e. shared libraries, shared memory etc.

Private The amount of resident memory that this process has which is

not shared with other processes. This figure is essentially

Resident - Shared and does not include the application

binaries.

Process The full process name and arguments
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Figure 3-9 MemTool GUI - Process/File Matrix

GUI Options
There are also some options to configure the order of the rows of files or

processes displayed. By default, they are sorted in reverse memory size order.

The Options menu can be used to select the sort options dialog.
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Figure 3-3 MemTool GUI - Sort Options
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The Workspace Monitor Utility - WSM
Another good utility for monitor memory usage is the workspace monitor. It

shows a live status of a processes memory map, and the amount of memory

that has been read and/or written to in the sampled interval.

This is particuly useful for determining how much memory a process is using

at any given instant.

The wsmcommand is invoked against a single process.

The counters in the wsmutility are in units of pages.

# wsm -p 732 -t 10

Read Write Mapped PROT Segment maker5X.exe(pid 683) Mon Jul 21 15:44:10 1997
  235       0     782   (R-X) maker
   10      11      36   (RWX) maker
  207     384    2690   (RWX) Bss & Heap
   14       0      74   (R-X) /usr/lib/libc.so.1
    2       1       3   (RWX) /usr/lib/libc.so.1
    0       1       1   (RWX) /dev/zero <or other device>
    0       0       1   (R-X) /usr/lib/straddr.so
    0       0       1   (RWX) /usr/lib/straddr.so
    1       0       2   (R-X) /usr/platform/SUNW,Ultra-2/lib/libc_psr.so.1
    1       0       1   (RWX) /dev/zero <or other device>
    0       0      56   (R-X) /usr/lib/libnsl.so.1
    0       0       4   (RWX) /usr/lib/libnsl.so.1
    0       0       3   (RWX) /dev/zero <or other device>
    0       0       2   (R-X) /usr/lib/libmp.so.2
    0       0       1   (RWX) /usr/lib/libmp.so.2
    0       0       9   (R-X) /usr/openwin/lib/libXext.so.0
    0       0       1   (RWX) /usr/openwin/lib/libXext.so.0
   26       0      54   (R-X) /usr/openwin/lib/libX11.so.4
    2       1       3   (RWX) /usr/openwin/lib/libX11.so.4
    0       0       4   (R-X) /usr/lib/libsocket.so.1
    0       0       1   (RWX) /usr/lib/libsocket.so.1
    0       0       1   (RWX) /dev/zero <or other device>
    0       0       1   (R-X) /usr/lib/libdl.so.1
    0       0      14   (R-X) /usr/lib/ld.so.1
    2       0       2   (RWX) /usr/lib/ld.so.1
    0       3       6   (RWX) Stack
  500     401    3753         Totals
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Finding Memory Leaks with DBX
A memory leak occurs when an application allocates memory, and then never

frees it.

A application with a memory leak can be confirmed by using MemTool (or

pmap) to look at the private portion of resident memory. If the private portion

continuously grows, then it is likely there is a memory leak.

The Run-time Leak Checker

The SunPro tools provide a great mechanism for tracking down memory leaks

in applications. The memory leak feature was made available in SPARCworks

version 3 onwards.

The example test program, memleak.c shows a typical leak.

Compiling the program

To use the SunPro memory leak checker, we must have access to the source of

the application, and compile with the -g flag

#include <stdio.h>
#include <stdlib.h>

main( int argc, char **argv)
{
        void *p;

        /* Allocate 50 bytes of memory */

        p=malloc(50);

        /* Loose the pointer to the original 50 bytes and
           allocate another 50 bytes */

        p=malloc(50);

        /* Free the second 50 bytes */

        free(p);

        /* Exit */

}



64 The Solaris Memory System—May, 1998

3

Running the Leak Test

The next step is to start the program under control of dbx , after enabling the

memory leak checker.

$ cc -g -o memleak memleak.c

$ dbx memleak
Reading symbolic information for memleak
Reading symbolic information for rtld /usr/lib/ld.so.1
Reading symbolic information for libc.so.1
Reading symbolic information for libdl.so.1
Reading symbolic information for libc_psr.so.1
(dbx) check -leaks
leaks checking - ON
(dbx) run
Running: memleak
(process id 9554)
Reading symbolic information for librtc.so
Skipping libc.so.1, already read
Skipping libdl.so.1, already read
Skipping libc_psr.so.1, already read
Enabling Error Checking... done
Checking for memory leaks...

Actual leaks report    (actual leaks:         1  total size:      50 bytes)

 Total  Num of  Leaked      Allocation call stack
 Size   Blocks  Block
                Address
======  ====== ==========  =======================================
    50       1    0x20a70  main

Possible leaks report  (possible leaks:       0  total size:       0 bytes)

execution completed, exit code is 1
(dbx)
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The Solaris Virtual Memory (VM) system used in Solaris 2.x today is a

complete rewrite of the SunOs 3.x VM system. The new VM system first

appeared in SunOs 4.x. This new VM system was written from the ground up

as an object-oriented extensible framework which allows new technology

(including filesystems) to be easily integrated into the operating system.

Together with the vnode architecture (vnode’s are discussed in the technical VM

description) already adopted in SunOs, it formed the core of AT&T’s Unix

System V Release 4.0 which was a joint development between Sun

Microsystems and AT&T.

Why Have A Virtual Memory System?
One of the objectives of a VM System is to allow memory objects to exist which

are larger than the available physical memory. This allows processes to have a

larger memory than available primary storage (e.g. RAM), and use slower but

larger secondary storage (e.g. disk) as a backing store.

A virtual view of memory storage known as an address space is presented to

the application, while the VM system transparently manages the virtual

storage between RAM and secondary storage.

Because RAM is significantly faster than disk, (100ns vs. 10ms, or approx.

100,000 times faster), the job of the VM system is to keep the most frequently

referenced portions of memory in the faster primary storage.
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In the event of a RAM shortage, the VM system is required to free RAM by

transferring infrequently used memory out to the backing store.

The VM system is also required to cater for the needs of multiple users, tasks

and workloads. In these environments, program binaries and application data

may be shared between users, and shared memory management is required so

that memory is not unnecessarily wasted when multiple instances of

applications are executed.

A recap of the major functions performed by a VM system are to manage the:-

• virtual to physical mapping of memory

• swapping of memory between primary and secondary storage to optimize

performance

• requirements of shared images between multiple users and processes

Demand Paging
There are two basic types of VM systems used in most operating systems, they

are swapping or demand paged.

The swapping memory systems use a user process as the granularity for

managing memory. If there is a shortage of memory then the least active

process is swapped out, freeing memory for other processes. This method is

easy to implement, but performance suffers badly when there is a memory

shortage because a process cannot resume execution until all of its pages have

been brought back in from secondary storage.

The demand paged model uses a small chunk of memory known as a page as

the granularity for memory management. Rather than swapping out a whole

process, the memory system just swaps out small least used chunks, which

allows processes to continue while an inactive part of them is swapped out.

Solaris uses a combined demand paged and swapping model. Demand paging

is used under normal circumstances, and swapping is only used as a last resort

method when desparate for memory.
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Combined I/O and Memory Managment
The Solaris VM system implements many more functions than just managing

application memory. In fact under Solaris, the VM system is responsible for

managing objects related to I/O and memory, including the kernel, user

applications, shared libraries and filesystems.

This differs significantly from other operating systems like earlier versions of

System V Unix, where there was a separate buffer cache for filesystem I/O.

One of the major advantages of using the VM system to manage filesystem

buffering is that all free memory in the system is used for file buffering,

providing significant performance improvements and removes the need for

tuning the size of the buffer cache.

The VM system gobbles up all free memory for filesystem buffers, which

means that on a typical system with filesystem I/O, the amount of free

memory available is almost zero. This can often be misleading, and has

resulted in numerous bogus memory leek bugs being logged over the years.

Don’t worry, it’s normal.

Design Goals of the Solaris Virtual Memory
The new VM system was built with the following goals in mind:-

• A new object-oriented memory management framework

• A virtual file concept (known as the vnode)

• Address spaces that are mapped vnode objects

• Support for shared and private memory (copy-on-write)

• Page based VM management

The VM system which resulted from these design goals provides an open

framework which now supports many different memory objects. The most

important objects of the memory system are segments, vnode’s and pages,

which are discussed in more detail later in the text. For example, all of the

following have been implemented as abstractions of the new memory objects:-

• Physical memory, in chunks called Pages

• Files, as vnode in a filesystem

• Filesystems, as a hierachy of vnode’s
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• Mapped hardware devices, such as framebuffers as a segments of

hardware mapped pages

• Process address spaces, as segments of mapped vnode’s

• Kernel address space, as segments of mapped vnode’s

PAGES - The basic unit of Solaris memory

Hardware Memory Management Units

Modern hardware architectures deal with physical memory in large chunks,

rather than individual bytes. These chunks are referred to as pages, and the size

of the chunk is governed by the hardware memory management unit. The

SPARC hardware offered by Sun over the past few years has had several

different types of memory management unit, which support a variety of page

sizes:

Each of the MMU’s support a wide range of page sizes; however Solaris is

mostly implemented using a fixed page size for each architecture. The Solaris

sun4c, sun4m and sun4d architectures all use a 4K page size. The new sun4u

UltraSPARC machines all use an 8K page size.

The optimal MMU page size is a trade-off between performance and memory

size efficiency. A larger page size has less memory management overhead, and

hence better performance, while a smaller page size wastes less memory due to

it’s smaller page size (memory is wasted when a page is not completely filled).

Table 4-1 Sun MMU Page Sizes

System Type
System
Type

Solaris 2.x
Page Size

SuperSPARC I & II (SC2000, SS20 etc.) sun4m,d 4k

HyperSPARC sun4m 4k

MicroSPARC I,II sun4m 4k

UltraSPARC I,II sun4u 8k
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When UltraSPARC was introduced, the cost of memory had greatly reduced,

and the average size of memory on a system had grown to the point where a

larger PAGE size provided better price/performance.

Solaris 2.6 actually breaks the fixed page size rule by implementing a large

kernel PAGE to reduce the kernel’s memory management overhead.

VNODE’s - The Virtual File Abstraction
The basis for all file objects in Solaris is the vnode, which also plays a very

important role in memory management.

The vnode was introduced as a new object to describe a virtual file, which

provides a filesystem and device independent interfaces to the kernel. The

vnode interface allows the ‘virtual file’ to describe many different logical and

physical devices, including disks, tty’s, network streams and sockets.

The vnode interface provides a information and pointers to the device-specific

functions about that file. All file operations (e.g. read, write, open, close) can be

performed on the vnode, without having to know what the underlying device

and filesystem are.

For example, to open a file without knowing that it resides on a UFS filesystem

the code fragement would be:

The vnode open macro would call the open() function of the underlying

filesystem for that vnode.

The vnode interface is shown in the following diagram:

vnode_t *vp;   /* Vnode pointer */
cred_t *cred;  /* Credentials, eg userid etc */

VOP_OPEN( vp , FREAD, cred )
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Figure 4-2 VNODE Interface

This diagram shows a vnode on a UFS filesystem. In this example, the vnode

has pointers for it’s functions (open, close etc.) which reference UFS specific

functions. A call to open() on this file simple calls the open function in the

vnode, which in turn calls the ufs_open() function. The UFS vnode, has a

pointer to the associated pages of memory which are currently in physical

RAM for this file (this is the buffer cache for this file).

vnode represent many other different types of files with different filesystems.

For example, a vnode which represents a raw disk device does not have

memory pages associated with it, and rather than pointing to the UFS

filesystem, it points to a virtual filesystem for special devices (specfs), which

contains functions for operating on character and block devices.

Another example of a vnode pointing to a special disk device is the SWAP

device. As we will see later, the SWAP vnode is used with the page structure to

represent application memory.

The structure a vnode in Solaris 2.6 shows the basic interface elements, along

with the other information contained in the vnode:

VNODE

Regular File
Directory
Block Device
Character Device
Link
FIFO
Process
Socket

VNODE Type

open()
close()
read()
write()
ioctl()
create()
link()
.
.

VNODE Ops

Memory Pages

Filesystem
Pointer

ufs_open()
ufs_close()
ufs_read()
ufs_write()
ufs_ioctl()
ufs_create()
ufs_link()
.
.
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Data Structure 4-3 Solaris 2.6 VNODE Structure

The HAT Layer
The relationship between physical RAM and the page structure is managed by

the Hardware Address Translation layer (HAT layer). The HAT layer is

machine specific set of routines that manage the mappings and address

translation between the PAGE structures and the MMU Hardware pages. The

HAT layer routines are called to set up and pull down the address translations

each time a page is created or destroyed (or paged in and out from backing

store).

The HAT layer also handles traps, so that when a reference is made to a VM

location that does not currently have a physical PAGE in core a fault routine is

invoked to bring the page in from the backing store.

typedef struct vnode {

kmutex_t v_lock; /* protects VNODE fields */
u_short v_flag; /* VNODE flags (see below) */
u_long v_count; /* reference count *
struct vfs *v_vfsmountedhere;/* ptr to vfs mounted here */
struct vnodeops*v_op; /* VNODE operations */
struct vfs *v_vfsp; /* ptr to containing VFS */
struct stdata *v_stream; /* associated stream */
struct page *v_pages; /* VNODE pages list */
enum vtype v_type; /* VNODE type */
dev_t v_rdev; /* device (VCHR, VBLK) */
caddr_t v_data; /* private data for fs */
struct filock *v_filocks; /* ptr to filock list */
struct shrlocklist*v_shrlocks; /* ptr to shrlock list */
kcondvar_t v_cv; /* synchronize locking */

} vnode_t;
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Figure 4-4 VM Layers

Pages as Vnode and Offset

In Solaris there is always a vnode associated with an allocated page of physical

memory. Each page of memory is described by a vnode and an offset within

that vnode. The vnode is used to describe the backing store for that page of

memory.

If the page is application memory, then the vnode for that page is the SWAP

device vnode. If the page is a buffer cache entry for a file, then the vnode is

that of the file being buffered.

Each page is a member of a hashed list of pages in the system. To find a

particular page of memory, the VM system uses the vnode and offset as a hash

key to find a pointer to the page. The VM system uses the page_find() function

to locate pages by searching the hash list.

As well as the page hash list, there are two other lists of pages. These are the

free list, and the cache list. The free list is a hashed list of pages that do not

have any mappings to VM. The cache list is a list of pages that are free, but are

still mapped to a particular vnode and offset. The total amount of free memory

= free list pages + cache list pages.

PAGE Level
Routines

VNODE

HAT Layer Routines

Interface

Hardware MMU

Cache and Memory BUS
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Cache list pages may be reused if the VM system needs to create a new

mapping for a page which was already in memory, but freed by the last user.

The cache list reuse scheme stops the system from paging in and out the same

pages over and over, or thrashing.

Figure 4-5 PAGE Level Interface

Each page has a state flag which indicates if the page is free, has been

referenced or modified. The state flag information is synchronized from the

registers in the MMU by the HAT layer each time the page structure is called,

or when the HAT layer function hat_sync() is called.

The page structure has many more elements than described in the pictorial

interface, most of which are locks and condition variables which as used to

signal processes which may be waiting for an I/O operation on the page. The

Solaris 2.6 page structure can be found in /usr/include/vm/page.h.

PAGE

Offset

VNODE

DISK

4K,8K of RAM

Page Hash List(s)
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Data Structure 4-6 Solaris 2.6 PAGE Structure

Virtual Address Spaces

Memory Segments

We know that VM pages are mapped to physical pages through the MMU and

HAT layer, and that each pages has some form of backing store. The missing

link is how pages relate to a linear address space, which is what applications

expect to see.

The relation ship between pages and linear address space is managed by

memory segments. A segment is a mapping of a particular memory address

and length to a device. There is also an object oriented segment interface,

which provides a device independent view of the device from which the

segment is mapped. These are called segment drivers.

typedef struct page {

struct vnode*p_vnode; /* logical vnode this page is from */
struct page  *p_hash; /* hash by [vnode, offset] */
struct page  *p_vpnext; /* next page in vnode list */
struct page  *p_vpprev; /* prev page in vnode list */
struct page *p_next; /* next page in free/intrans lists */
struct page *p_prev; /* prev page in free/intrans lists */
u_offset_t p_offset; /* offset into vnode for this page */
selock_t p_selock; /* shared/exclusive lock on the page */
u_short p_lckcnt; /* number of locks on page data */
u_short p_cowcnt; /* number of copy on write lock */
kcondvar_t p_cv; /* page struct's condition var */
kcondvar_t p_io_cv; /* for iolock */
u_char p_iolock_state;/* replaces p_iolock */
u_char p_filler; /* unused at this time */
u_char p_fsdata; /* file system dependent byte */
u_char p_state; /* p_free, p_created */

} page_t;
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Figure 4-7 Segment Interface

The most commonly used segment driver in Solaris is the vnode segment, or

segvn, which is used to map a vnode at a particular virtual address and offset.

The vnode segment is used for:-

• Anonymous application memory (e.g. malloc()’ed heap memory, kernel

heap, System V shared segments, program stacks) which has the SWAP

device as it’s vnode

• Executable binaries and shared libraries which have the program file in

the filesystem (e.g. /bin/sh or /usr/lib/libc.so)

• Regular files, where a file has pages in memory (filesystem cache)
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There are other types of memory which don’t have pages or vnode’s

associated with them. These other types of segments are typically associated

with hardware devices, such as graphics adapters.

Segment Protection

Each segment is mapped with a specific protection, which is a combination of:-

• EXEC - The mapping is allowed to have machine codes executed within

it’s address range, typically shared with other processes.

• READ - The mapping is allowed to be read from, writes will generated a

SIGSEGV if write protection is not also enabled.

• WRITE - The mapping is allowed to be written to, reads will generate a

SEGSEGV if read protection is not also enabled.

• SHARED - All writes to this segment are shared with other segments,

including other processes.

• PRIVATE - Writes to this segment will cause the VM system to fault and

allocate a private PAGE of anonymous memory at the write address. This

is called Copy On Write (COW).

Segment protection mapping can be read about in the man page for the

mmap() system call, and in /usr/include/sys/mman.h

Table 4-8 Solaris 2.6 Segment Drivers

Segment Function

seg_vn Mapped files, SWAP etc.

seg_map Optimized version of seg_vn for I/O

seg_dev Mapped hardware devices

seg_mapdev Mapped character devices

seg_mdi Mapped multimedia devices (graphics)

seg_vpix For VP/ix V86 DOS emulation

seg_sx SX Memory Driver for SS20-SX
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Process Address Spaces as Mapped Segments

The virtual address space of a process on Solaris 2.6 is 4GB, with the binaries at

the bottom, and the stack at the top. Shared libraries appear close to the top of

the mapping.

The Address Space of a process is simply a mapping of different segments in to

a virtual address space.

Figure 4-9 Solaris 2.6 Virtual Address Space for a Process

Note that the address space is not contiguous. There is space between the

shared libraries and the stack, and there is also space between the heap and the

shared libraries. These empty addresses are often used for other segments,

such as System V shared memory and mmap()ed files.

The segments are typically:-
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Variables (Data)
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Variables (Data)
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Executable Text
A mapping of the pure executable part of the binary, mapped READ only.

Executables smaller than 280k (set by the smallfile parameter) are pre-

faulted in, rather than relying on demand paging.

Executable Data
A mapping of the Data segment of the binary, which contains initialized

variables from the binary. The Data segment is mapped READ, WRITE and

PRIVATE so that changes to the binaries Data segment are not reflected into

other processes (COW).

This happens when a program changes the value of one of it’s initialized

variables. For example, if prog.c sets i=0, then the value 0 is stored in the Data

segment; if the value of i is changed, then a COW page is created and mapped

over the original page in the Data segment.

Heap
The program Heap contains all of the programs anonymous memory, which is

usually allocated via malloc() or brk(). Anonymous memory is mapped READ,

WRITE and PRIVATE.

Shared Library Text and Data
The Shared libraries Text and Data segments are mapped with the same

protections as the executable.

Optional System V Shared Memory
Mapped SHARED, and is mapped into the address space of other processes so

that changes are reflected.

Optional mmap()ed files.
Files can be mapped into the address space with the mmap() system call, They

can be mapped with any protection except EXEC.
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Stack
The program stack is a separate mapping of anonymous memory which is

mapped READ and WRITE.

An example process address space can be seen using the pmap command.

The Pageout Process
An additional component of the VM system is the pageout scanner. It is

installed at boot-time as a kernel process. Its task is to free up memory when

the amount of free memory falls below a preset threshold.

# pmem 25888
 or
# /usr/proc/bin/pmap -x 25888

25888:  ksh

Addr       Size    Res Shared   Priv Prot               Segment-Name
-------- ------ ------ ----- ------ ----------------- ---------------------------
00010000   184K   184k   184k     0k read/exec          /bin/ksh
0004C000     8K     8k     8k     0k read/write/exec    /bin/ksh
0004E000    40K    40k     0k    40k read/write/exec    [ heap ]
EF5E0000 16K 16k 8k 8k read/exec /usr/lib/locale/en_AU.so.1
EF5F2000 8K 8k 0k 8k read/write/exec /usr/lib/locale/en_AU.so.1
EF600000   592K   568k   560k     8k read/exec          /usr/lib/libc.so.1
EF6A2000    24K    24k     8k    16k read/write/exec    /usr/lib/libc.so.1
EF6A8000     8K     8k     0k     8k read/write/exec
EF6B0000     8K     0k     0k     0k read/write/exec
EF6C0000    16K    16k    16k     0k read/exec          /usr/lib/libc_psr.so.1
EF6D0000    16K    16k    16k     0k read/exec          /usr/lib/libmp.so.2
EF6E2000     8K     8k     8k     0k read/write/exec    /usr/lib/libmp.so.2
EF700000   448K   400k   400k     0k read/exec          /usr/lib/libnsl.so.1
EF77E000    32K    32k     8k    24k read/write/exec    /usr/lib/libnsl.so.1
EF786000    24K     8k     0k     8k read/write/exec
EF790000    32K    32k    32k     0k read/exec          /usr/lib/libsocket.so.1
EF7A6000     8K     8k     8k     0k read/write/exec    /usr/lib/libsocket.so.1
EF7A8000     8K     0k     0k     0k read/write/exec
EF7B0000     8K     8k     8k     0k read/exec/shared   /usr/lib/libdl.so.1
EF7C0000   112K   112k   112k     0k read/exec          /usr/lib/ld.so.1
EF7EA000    16K    16k     8k     8k read/write/exec    /usr/lib/ld.so.1
EFFFC000    16K    16k     0k    16k read/write/exec
EFFFC000    16K                                          [ stack ]
-------- ------ ------  ----- ------
          1632K  1528k  1384k   144k
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Because Solaris uses the VM system to buffer files, a system with I/O activity

will very quickly use any free memory available for buffering, which brings

the amount of free memory down to the threshold. Of course, when that

threshold is met, the pageout scanner is invoked.

This may seem a little strange, because the pageout scanner is being invoked

even when there is ample memory in the system. Don’t worry, it’s normal, but

it means that the pageout scanner plays a very important role in every system,

even when there is no memory shortage. Please refer to “I/O via the VM

System“ on page 90 for more information.

Basis of Operation

The pageout scanner is based on the generic code which is present in Unix

System V Release 4, and many other platforms. It uses a Not Recently Used

(NRU) model which scans though the available pages looking for pages that

have not been referenced since the last check.

The pageout daemon checks 4 times per second to see if free memory drops

below lotsfree , a preset parameter that controls the pageout scanner. The

scanner is also woken up when a memory request is made and the free list is

below the threshold.

If memory is lower than this threshold, the scanner is invoked. The scanner is

responsible for doing the real work in deciding which pages of memory to free.

Pageout Scanner

The scanner uses a two handed clock analogy, where the entire physical RAM

is represented by the 12 hours on the clock face. There are two hands rotating

around the clock at the same speed, one slightly ahead of the other. As the

hands rotate, the front hand clears the referenced flag in the page. The

backhand then checks the page as it cycles past some time later to see if the

page has either been referenced since the front hand cleared the flags. If the

page has not been referenced or modified, then it is a candidate for freeing,

subject to one more check.
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Figure 4-1 Pageout scanner

If the page has more than po_share mappings (i.e. it’s shared by more than

po_share processes), then it will be skipped. The variable po_share starts of

at 8, and each time round the scanner is decremented, unless the scan around

the clock does not find any page to free, in which case po_share will be

incremented. This whole processes biases the scanner to pick on pages which

don’t look like shared library or executable pages.

Pageout Scanner Parameters

The parameters which control the clock hands do two things: they control the

rate that the scanner scans though pages, and they control the time (or

distance) between the front hand and the backhand. The distance between the

backhand and the front hand is handspreadpages , and is in units of pages.

The scanner starts scanning when there are lotsfree - deficit pages free at

a rate of slowscan pages per second. The deficit parameter is internal to

the VM system, andis dynamically set by the kernel to indicate to the VM

system how many pages are needed from recent activity.

The rate at which the scanner scans increases linearly between lotsfree and

a minimum threshold, minfree .

Clearing Bit

Write to swap
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Figure 4-2 Pageout Scanner Parameters

If the amount of free memory falls below desfree , the scanner is run at every

clock cycle, or by default 100 times a second. This helps the scanner try to keep

at least desfree pages on the free list.

Once the scanner has started, it will remain running for desscan pages. The

desscan parameter is normally set so to the number of pages the scanner

needs to scan to accomplish the rate between slowscan and fastscan required.

There is another hook in other parts of the system so that if a large amount of

memory is needed, needfree is set to reflect the amount required and desscan

will run to scan fastscan pages.

Another parameter, maxpgio, limits the rate at which I/O is queued to the

swap devices. It is set low to prevent saturation of the swap devices. The

parameter defaults to 40 I/O’s per second on sun4c, sun4m and sun4u

architectures, and 60 I/O’s per second on the sun4d architecture. The default

setting is often inadequate for modern systems, and should be set to 100 times

the number of swap spindles.
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Because the pageout daemon also pages out I/O requests, this parameter also

limits the rate at which pageout can write I/O’s.

I/O requests are normally queued and written by user processes, and hence

not subject to maxpgio; however when there is a memory shortage, the

pageout scanner carries out a lot of the I/O writes, and maxpgio can

sometimes be a limiting factor.

The following table describes the parameters which control the pageout

process in the current Solaris and patch releases.:

Table 4-10 Pageout Parameters

Parameter Description Min 2.6 Default

lotsfree If free memory falls below lotsfree then

the pageout scanner starts 4

times/second, at a rate of slowscan

pages/second

512K 1.5% of mem

desfree If free memory falls below desfree,

then the pageout scanner is started 100

times/second

min-

free

lotsfree/2

minfree The point at which scan rate is set to

fastscan. The scan rate is a linear

interpolation between lotsfree (scan

rate=slowscan) and minfree.

desfree/2

throttlefree The number at which point the

page_create routines make the caller

wait until free pages are available.

- minfree

fastscan The rate of pages scanned per second

when free memory = minfree.

Measured in pages.

Minimum of

64MB/s or

1/4 Mem.

Size.

slowscan The rate of pages scanned per second

when free memory = lotsfree

- fastscan/10

desscan The number of pages that the scanner

calculates it needs to scan each time

the scanner wakes up to achieve the

desired scan rate.

Dynamic
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There is also a CPU utilization clamp on the scan rate, to prevent the pageout

daemon from using too much processor time. There are two internal limits that

govern the desired and maximum CPU time that the scanner should use. In

ideal conditions the scanner will try to use 4% of CPU to scan pages. If there is

a critical memory shortage and the scan rate increases, it is capped so that it

will occupy no more than 80% of a single CPU.

The Memory Scheduler
In addition to the pageout process, the CPU scheduler/dispatcher can swap

out entire processes to conserve memory. This is a separate operation from

pageout.

Swapping out a process involves removing all of a processe’s thread structures

and private pages from memory, and setting flags in the process table to

indicate that this process has been swapped out. This is an inexpensive way to

conserve memory, but dramatically effects a processes performance, and hence

is only used when paging fails to consistently free enough memory.

The memory scheduler is launched at boot time, and does nothing unless there

is consistently less than desfree memory (30 second average). At this point the

memory scheduler starts looking for processes which it can completely swap

out. The memory scheduler will soft-swap out processes if there is a minimal

shortage, or hard-swap (soft-swap and hard-swap are referenced in the

following paragraphs) processes if there is a larger memory shortage.

maxpgio A throttle for the maximum number of

pages per second that the swap device

can handle

~60 60pgs/s

handspreadpages The number of pages between the front

hand clearing the reference bit and the

backhand checking the reference bit.

1 fastscan

phbysmem Total page count

deficit Added to boost lotsfree 0 lotsfree

Table 4-10 Pageout Parameters

Parameter Description Min 2.6 Default
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Soft Swapping

Soft swapping occurs when there the 30 second average for free memory is

below desfree . At this point the memory scheduler will look for processes

that have been inactive for at least maxslp seconds.

When the memory scheduler find a process that has been sleeping for maxslp
seconds, it swaps out the thread structures for each thread, then pages out all

of the private pages of memory for that process.

Hard Swapping

Hard swapping occurs when:

• There are at least two processes on the run queue waiting for CPU

• The average free memory over 30 seconds is consistently less than

desfree

• There is excessive paging (determined to be true if pageout+pagein >

maxpgio )

When hard swapping is invoked, a much more aggressive approach is used to

find memory. The first step is that the kernel is requested to unload all

modules and cache memory that is not currently active, followed by a

sequential swapping out of processes until the desired amount of free memory

is returned.
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Parameters that affect the Memory Scheduler

Table 4-11 Memory Scheduler Parameters

Parameter Affect on Memory Scheduler

desfree If the average amount of free memory falls below desfree for 30

seconds, then the memory scheduler is invoked

maxslp When soft-swapping, the memory scheduler starts swapping

processes that have slept for at least maxslp seconds. The

default for maxslp is 20 seconds and is tunable.

maxpgio When the run queue is greater than two, free memory is below

desfree and the paging rate is greater than maxpgio then hard

swapping occurs, unloading kernel modules and process

memory.
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I/Ovia theVMSystem 5

Traditional implementations of Unix use a separate memory and I/O system,

each with their own behavior and functionality. As we have seen from the

overview, the VM system in Solaris is implemented in a manner which

provides a framework for both memory management and paged I/O.

Each component of the I/O system uses memory in some shape or form to

complete I/O transactions. Memory is used to accelerate the operation by

keeping recently used copies in memory for later use. This is often referred to

as caching or buffering. Caching refers to storing data structures in memory,

whilst buffering refers to storing complete buffers or pages of data in memory.

The major components of the I/O system are shown below, together with their

memory association:

Table 5-1 I/O Memory Buffers and Caches

I/O Component Type Description

New Buffer Cache Buffer Used to buffer filesystem I/O so that repeat

reads can often be satisfied from memory, and

so that write clustering can occur. Buffer unit

size is pages.

Directory Name Cache Cache Used by the filesystem infrastructure to

lookup inode numbers based on their

filesystem name.
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Inode Cache Cache Used to keep attribute information about files

in memory (e.g. size, access time etc..)

Old Buffer Cache Buffer Used to store blocks from the filesystem. Acts

as a buffer between the Inode cache and the

disk devices.

Stdio Buffer Buffer Used to buffer the fread/fwrite calls in the

users process, before read() and write().

Table 5-1 I/O Memory Buffers and Caches

I/O Component Type Description
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Figure 5-1 Solaris I/O Framework
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Filesystem I/O

The filesystem interface provides a user and application view of the underlying

storage. Solaris provides a filesystem independent interface, which allows

many different types of filesystems to be plugged into the framework.

There are both regular filesystems and special filesystems. Regular filesystems

provide an interface to buffered storage devices, whilst special filesystems

provide access to pseudo devices. A good example of a special filesystem is the

process file system, /proc.

The New Buffer Cache

I/O to the filesystem is typically generated by user application I/O, such as

read() and write() system calls. Filesystem I/O is also generated from mapped

files, which include exectuables, shared libraries and mmap()ed files.

Regular files in the filesystem are cached in the new buffer cache. Each time a

file is read, an entire page size chunk is read from the disk and stored in a page

of memory in exactly the same way as a page of user application memory. The

page remains in memory until a memory shortage occurs, at which time the

pageout scanner may remove this page and place it on the free list.

Table 5-2 Filesystems in Solaris

Filesystem Type Device Description

ufs Regular Disk Unix Fast Filesystem, default in Solaris

nfs Regular Network Network filesystem

specfs Special Device Drivers Filesystem for the /dev devices

procfs Special Kernel /proc filesystem representing processes

pcfs Regular Disk MSDOS filesystem

sockfs Special Network Filesystem of socket connections

cachefs Special Filesystem Uses a local disk as cache for another fs

tmpfs Special Memory Uses unused memory and swap

autofs Special Filesystem Uses a dynamic layout to mount other fs

vxfs Regular Disk Veritas File System, similar to ufs
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Writes to the filesystem are similar. The page of data containing the

information which is written is updated, and then a page out operation is

scheduled for that particular page, which eventually writes the modified page

of data out to the filesystem. Synchronous writes are completed in the same

manner, although the caller waits for the pageout operation to complete before

returning.

It should be noted that the vmstat counters will show pagein’s and pageout’s

for normal file I/O.

Directory Lookups
The meta data for files in filesystems are stored in the filesystem directory

structure. The UFS filesystem (and VxFS) use Inodes to store the meta

information about each file. All files in these filesystems have Inode numbers,

which are linked in the filesystem to each files pages.

When a user wants to open a particular file, a filename is used to reference the

file, rather than an Inode number. The filesystem must then look through the

files in the current directory until it finds the desired filename to get the Inode

number for the required file.

Because this operation is expensive, and can often involve reading many disk

blocks, a cache is used to store the name/Inode pair once it is retrieved. This

saves the caller from repeating the process, the next time the same file is

opened.

This cache is known as the directory name lookup cache (DNLC), and is the

first tier in the meta data caches in regular filesystems. The DNLC is a statically

sized cache that stores the inode number, plus 31 characters of directory entry

or pathname component. Entries longer than 31 bytes are not stored in the

DNLC and hence cause additional directory scans.

The size of the DNLC is set at boot time via the ncsize parameter.
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UFS Inode Cache
The UFS Inode Cache is used to store Inode information about each file.

Because regular information such as size, access time, modification time all

need to be accessed frequently, storing all of this data directly on disk without

buffering would cause significant I/O. For example, each time a file is written

to, it’s modification time must be updated.

All of this meta data is stored in a dynamically sized cache. The number of

inactive entries in the inode cache are limited by the kernel parameter

ufsninode . The data in the UFS Inode cache is obtained via the block I/O

system, and uses the Old Buffer Cache to buffer the physical disk blocks on

which the Inode data resides.

The Old Buffer Cache
Other Implementations of Unix use a separate buffer cache for the I/O system,

which was statically sized at boot up, and needed to be continuously tuned to

maintain an acceptable buffer hit rate. Added to this is the added complexity

of ensuring that the buffer cache did not use too much memory and aversely

affect application performance.

The new dynamic buffer cache is much easier to manage, and is largely self

tuning.

The Old Buffer Cache is still implemented in Solaris, but is used to buffer block

I/O for meta data. It has been enhanced so that it is semi-dynamic, which

means that it can grow itself in size when needed, but cannot shrink. To stop

the buffer from growing too large, a high water mark (BUFHWM) is used as a

limit, which is preset at boot-time.

Free Behind and Read Ahead
To prevent saturation of the VM system, the UFS filesystem implements a free-

behind policy when reading large sequential files.

File I/O is deemed to be sequential if the reads to the file follow consecutive

pages, and the file is larger than 32k.

A simple example of free behind, is a small C program which reads

sequentially through a file using the read() system call.
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In the example, you can see that as the file is read, the number of page in’s (pi)

jump up to reflect the file I/O. Because this file is being read sequential, the

amount of free memory never goes down far enough to invoke the scanner,

which is indicated by zeros in the scan rate (sr) column.

The same test program can be rerun, but with a random seek before each read

to simulate random I/O. This disables the free-behind algorithm and continues

to consume pages of virtual memory.

The test program has been renamed rreadtest, for random read in this case.

# ls -l testfile
total 87760
-rwxr-xr-x   1 root     other    44933120 Jul 15 15:12 testfile

# ./readtest testfile&

# vmstat 3
  procs     memory            page            disk          faults      cpu
 r b w   swap  free  re  mf  pi po fr de sr s0 -- -- --   in   sy   cs us sy id
 0 0 0  50404  3536   0   0   0  0  0  0  0  0  0  0  0   36    2   13  0  1 99
 0 0 0  50404  3528   0   0   4  0  0  0  0  3  0  0  0   66   29   42  2  8 90
 0 0 0  50404  3516   0   0   0  0  0  0  0  1  0  0  0   58   29   42  1  7 91
 0 0 0  50404  3516   0   0  66  0  0  0  0  3  0  0  0   73   23   46  1 10 89
 0 0 0  50512  2884   0   0 321  0  0  0  0 28  0  0  0  215   66  127  1 77 22
 0 0 0  50512  1272   0   0 341  0  0  0  0 25  0  0  0  139   58  115  0 82 18
 0 0 0  50512  1236   0   0 317  0  0  0  0 19  0  0  0  119   57  120  0 86 14
 0 0 0  50512  1276   0   0 322  0  0  0  0 14  0  0  0  100   55  117  0 87 13
 0 0 0  50440  1356   0   0  82  0  0  0  0  4  0  0  0   56   22   42  0 23 77

# ./rreadtest testfile&

# vmstat 3
  procs     memory            page            disk          faults      cpu
 r b w  swap  free  re  mf  pi  po fr de sr s0 -- -- --   in   sy   cs us sy id
 0 0 0 50436  2064   5   0  81   0  0  0  0 15  0  0  0  168  361   69  1 25 74
 0 0 0 50508  1336  14   0 222   0  0  0  0 35  0  0  0  210  902  130  2 51 47
 0 0 0 50508   648  10   0 177   0  0  0  0 27  0  0  0  168  850  121  1 60 39
 0 0 0 50508   584  29  57  88 109  0  0  6 14  0  0  0  108 5284  120  7 72 20
 0 0 0 50508   484   0  50 249  96  0  0 18 33  0  0  0  199  542  124  0 50 50
 0 0 0 50508   492   0  41 260  70  0  0 56 34  0  0  0  209  649  128  1 49 50
 0 0 0 50508   472   0  58 253 116  0  0 45 33  0  0  0  198  566  122  1 46 53
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In this example, pages are paged in and free memory drops to the point where

the system starts scanning looking for pages that it can free. Note that at no

time is the system actually short of memory, it’s just that all of the free pages

have been used by the buffer cache and the scanner is invoked to free some

memory.

Readahead is a similar concept. Read ahead will launch a read for the next

block when reading sequential data.

The fsflush process
The fsflush process has a similar goal to the pageout daemon, in that it scans

though the page list looking for suitable pages. It however does not free pages,

it merely writes dirty pages out to disk.

The fsflush process is launched every by default every 5 seconds, and looks

for pages that have been modified (the modified bit is set in the PAGE

structure) more than 30 seconds ago. If a page has been modified, then a

pageout is scheduled for that page, but without the free flag so the PAGE

remains in memory.

The fsflush daemon will flush both data and inode pages by default. There

are several parameters that affect the behavior of fsflush .

Table 5-3 Parameters that affect fsflush

The fsflush process will also write all pages that have been scheduled for

delayed write.

Parameter Description Min 2.6 Default

tune.fsflushr The number of seconds between

fsflush scans.

1 5

autoup Pages older than autoup in seconds

are written to disk.

1 30

doiflush By default fsflush will flush both

inode and data pages. Set to zero to

suppress inode updates.

0 1

dopageflush Set to zero to suppress page flushes. 0 1
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Direct I/O
A new feature added to Solaris 2.6 is direct I/O. This allows reads and writes

to files in a regular filesytem to bypass the paged vnode buffer cache.

If buffers are used to accelerate I/O speed, then you might ask what the benefit

of this is. In many cases direct I/O would mean a dramatic drop in

performance, because each read must read from the disk, even if read two or

three times.

Direct I/O is beneficial when large amounts of data which far exceed the size

of the memory in the system are being read, or the data is already being

buffered elsewhere.

A good example of this is Oracle with decision support databases.Oracle uses a

large shared memory segment to cache database table data. Putting Oracle’s

cache on top of Solaris’s buffer cache just means additional overhead, so often

Oracle is installed with raw partitions to avoid this double caching effect.

Direct I/O allows applications like Oracle to use regular filesystems, but

without the additional overhead of double caching.

Direct I/O is implemented by mounting the filesystem with a special flag, or

using fadvise() in the file to disable caching:

Direct I/O will only bypass the buffer cache if all of the following are true:-

• The file is not mmap()ed

• The file is not on a SDS logging filesystem

• The file does not have holes

• The read/write is sector aligned (512byte)

RAW Devices

The raw disk devices in /dev/rdsk are sometimes used for direct access to

storage devices for the same reason as direct I/O.

# mount -o forcedirectio /dev/dsk/c0t0d0s6 /u1
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All reads and writes to raw devices are completely unbuffered.

Asynchronous I/O

Databases often use a modern method of queuing I/O requests to the devices,

known as Asynchronous I/O. Using this method, multiple I/O’s can be

requested at once, with an asynchronous notification via a signal when the I/O

has completed.

The I/O calls are made via libaio functions aioread, aiowrite etc.

Solaris has an additional feature - Kernel Asynchronous I/O, which allows

libaio to pass the I/O requests directly to the kernel and device drivers of the

storage device.

Kernel Asynchronous I/O is scheduled at run-time if the device driver that the

I/O is scheduled for supports the asynchronous entry points, and the data is

on a non-buffered (e.g. raw) device.

If the device does not support asynchronous entry points then the I/O requests

are handled by a user-level thread.

When kernel Asynchronous I/O is used there is no buffering in the VM system

of any data.
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