CISSP OSG

Application and System Development Security

[image: image1.jpg]

Applications

And

System Development Security

Version 1.0

Certified Information Systems Security Professional

Open Study Guide (OSG)

09 July 2001

All rights reserved - CISSP OSG and its contributors

The Domain Leader for this domain is: Jeanette LaRosa (bluehonda@att.net)

Jeanette produced the first draft version of this study guide

Thanks to Kurt Steiner kurteric@hotmail.com for this second draft version

TABLE OF CONTENTS

71.
INTRODUCTION

1.1
Look and Feel
7
1.2
Give and Take
7
2.
DISTRIBUTION AGREEMENT
9
3.
CONTRIBUTORS
10
4.
DOMAIN DESCRIPTION
11
5.
EXPECTED KNOWLEDGE AREAS
12
6.
THE MEAT
15
6.1
The CIA triad
15
6.2
Application Issues
15
6.2.1
Distributed Environment
15
6.2.1.1
Agents
15
6.2.1.2
Applets
16
6.2.1.2.1
Active-X
16
6.2.1.2.2
Java
16
6.2.1.3
Objects
16
6.2.2
Local/Non-distributed Environment
17
6.2.2.1
Viruses
17
6.2.2.2
Trojan Horses
17
6.2.2.3
Logic Bombs
18
6.2.2.4
Worms
18
6.3
Databases and Data Warehousing
18
6.3.1
Aggregation
18
6.3.2
Data Mining
19
6.3.3
Garbage Collection
19
6.3.4
Inference
19
6.3.5
Polyinstantiation
20
6.3.6
Multi-Level Security
21
6.3.7
Data Base Management System (DBMS) Architecture
22
6.4
Data/Information Storage
22
6.4.1
Primary
22
6.4.2
Secondary
22
6.4.3
Real
22
6.4.4
Virtual
22
6.4.5
Random
23
6.4.7
Sequential
23
6.5
Knowledge-Based Systems
23
6.5.1
Expert Systems
23
6.5.2
Neural Networks
24
6.6
System Development Controls
24
6.6.1
System Development Life Cycle
24
6.6.1.1
Conceptual Definition
24
6.6.1.2
Functional Requirement Determination
24
6.6.1.3
Protection Specifications Development
24
6.6.1.4
Design Review
24
6.6.1.5
Code Review or Walk-Through
24
6.6.1.6
System Test Review
24
6.6.1.7
Certification
24
6.6.1.8
Accreditation
25
6.6.1.9
Maintenance
25
6.6.2
Security Control Architecture
25
6.6.2.1
Input Controls
26
6.6.2.2
Output Controls
26
6.6.2.3
Transaction controls
26
6.6.2.4
Process Isolation
26
6.6.2.5
Hardware Segmentation
26
6.6.2.6
Separation of Privilege
26
6.6.2.7
Accountability
27
6.6.2.7.1
Granularity
27
6.6.2.7.2
Work Factor
27
6.6.2.7.3
Assurance
27
6.6.2.8
Layering
27
6.6.2.9
Abstraction
28
6.6.2.10
Data Hiding
28
6.6.2.11
System High
28
6.6.2.12
Security Kernel
28
6.6.2.13
Reference Monitor
28
6.6.3
Modes of Operation
29
6.6.3.1
Supervisor
29
6.6.3.2
User
29
6.6.4
Integration Levels
29
6.6.4.1
Network/System
29
6.6.4.2
Operating System
29
6.6.4.3
Database
29
6.6.4.4
File
29
6.6.5
Service Level Agreement
29
6.7
Malicous Code
29
6.7.1
Definitions
29
6.7.2
Jargon
30
6.7.3
Myths/Hoaxes
30
6.7.4
The concept of hackers, phreaks, and virus writers
30
6.7.5
Anti-Viral protection
30
6.7.6
Anti-Viral software
30
6.7.7
Various types of computer viruses
30
6.7.7.1
Multi-partite
30
6.7.7.2
Macro
30
6.7.7.3
Boot sector infectors
31
6.7.7.4
Macintosh
32
6.7.7.5
File Infectors
32
6.7.8
Logic bombs
32
6.7.9
Trojan Horses
32
6.7.10
Active-X
32
6.7.11
Java
33
6.7.12
Trap Doors
34
6.7.13
Back Door (trap door or wormhole)
34
6.7.14
Covert Channel
35
6.7.15
Covert Storage Channel
35
6.7.16
Covert Timing Channel
35
6.8
Method of attack
35
6.8.1
Brute force or exhaustive attack
35
6.8.2
Denial Of Service
35
6.8.3
Dictionary Attacks
36
6.8.4
Spoofing
36
6.8.5
Pseudo flaw
36
6.8.6
Alteration of authorized code
37
6.8.7
Hidden code
37
6.8.8
Logic bomb
37
6.8.9
Trap door
37
6.8.10
Interrupts
37
6.8.11
Remote maintenance
37
6.8.12
Browsing
37
6.8.13
Inference
37
6.8.14
Traffic analysis
38
6.8.15
Flooding
38
6.8.16
Cramming
38
6.8.17
Time of Check/Time of Use (TOC/TOU)
38
7.
GLOSSARY
39
8.
REFERENCES
40

REVISION RECORD
	REVISION #
	DATE
	DESCRIPTION
	COMPLETED BY

(Print Name and sign)

	Draft V 1
	11 Mar 2001
	Initial Draft Release
	Jeanette LaRosa

Senior Technical Staff Member, AT&T

	Draft V2
	
09 July 2001
	Added material to Draft V1
	Kurt Steiner GSEC GCIH

U.S. Coast Guard

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

1. INTRODUCTION

First I would like to congratulate you on choosing the Open Study Guides as your source of information to help you quickly masters the content of the 10 domains of expertise.

The study booklets are based directly on the ISC2 CBK document. This document does not take precedence over the information that is provided by ISC2. We will attempt to keep this document in synch with the CBK, however ISC2 will always be your main point of reference for the latest info on the requirements needed before attempting certification as a CISSP. You can visit the ISC2 web site at the following address: http://www.isc2.org

This document was produced by a consensus of security experts and students from the CISSP Open Study Guide (OSG) web site. If you like this document, we beg and invite you to contribute by visiting the CISSP OSG at http://www.cccure.org

1.1 Look and Feel

The study guides have been very simply formatted using Microsoft Word. My philosophy is that “Content should have precedence over beautifying”, once the content is appropriate and all that is left is beautifying we can then look at finding people that can improve the look and feel of the document.

1.2 Give and Take

You liked this guide and it’s content. It helped you saved valuable time and focused on the important material that must be covered. Please do take a bit of your time to give something back to other members of the site; you do not need to be the world greatest security experts. Any contribution (web links, typo correction, sample questions, etc…) is important and will help to improve these guides and the site as a whole.

WARNING:

This guide does not replace in any way the outstanding value of the ISC2 CISSP CBK Seminar and the fact that you must have been directly involved into the security field or into one of the 10 domains of expertise for at least 3 years if you intend to take the CISSP exam. This booklet simply intends to make your life easier and to provide you with a centralized and compiled list of resources for this particular domain of expertise. Instead of having strictly a list of headings, we will attempt to give you the headings along with the information to supplement the headings.

SECOND WARNING:

As with any security related topic, this is a living document that will and must evolve as other people read it and technology evolves. Please feel free to send comments and input to be added to this document. Any comments, typo correction, etc… are most welcome and can be sent directly to the domain leader listed on the first page of this document, or you can visit http://www.cccure.org and submit your feedback directly on the web site.

This is NOT a document sponsored by the authors, contributors, or the organizations that these people belongs to, nor is it to be interpreted as a representation of the “Domain Leader” company operating practices.

2. DISTRIBUTION AGREEMENT

This document is based on standards, online information, professional experience, books, and a consensus of experts that took part in the development of this guide. Whenever possible the source of information will be mentioned.

This document may be freely read, stored, reproduced, disseminated, translated or quoted by any means and on any medium provided the following conditions are met:

· Every reader or user of this document acknowledges that he his aware that no guarantee is given regarding its contents, on any account, and specifically concerning veracity, accuracy and fitness for any purpose. Do not blame me if some of the exam questions are not covered or the correct answer is different from the content of this document.

· No modification is made other than cosmetic, change of representation format, translation, correction of obvious syntactic errors.

· Comments and other additions may be inserted, provided they clearly appear as such. Comments and additions must be dated and their author(s) identifiable. Please forward your comments for insertion into the original document to the domain leader listed on page 1 or submit them directly on the CISSP OSG web site at http://www.cccure.org

· Redistributing this document to a third party requires simultaneous redistribution of this license, without modification, and in particular without any further condition or restriction, expressed or implied, related or not to this redistribution. In particular, in case of inclusion in a database or collection, the owner or the manager of the database or the collection renounces any right related to this inclusion and concerning the possible uses of the document after extraction from the database or the collection, whether alone or in relation with other documents.

TIP:

Remember while taking your exam, you must look for the most correct answer and people always come first.

3. CONTRIBUTORS

The following members of the CISSP Open Study Guide web site have contributed to this study guide by either being active within the forums, providing documents, providing references, or any other help that allowed us to produce this guide.

Listed in alphabetical order of Nickname:

Bluehonda
Jeanette LaRosa

AT&T

www.att.net
Kurt

Kurt Steiner

U.S. Coast Guard
www.uscg.mil

Popoute
Clément Dupuis

CGI Consulting
www.cgi.ca

If I do forget anyone in the above list, please do not feel left out. Send me an email and I will immediately correct the list to give you the credit that you deserved.

**** SPECIAL MENTION ****

All readers of this document are in debt toward Kurt and Jeanette who invested their free time in producing this fantastic study guide. CCCure.Org is spoiled to have great contributors like the two of you. There is no word to express my gratitude for your help. All I can say is that you have helped me a great deal in the long journey of producing top notch study guides.

Clement Dupuis

Maintainer of the CISSP Open Study Guide web site

4. DOMAIN DESCRIPTION

Applications and systems development security refers to the controls that are included within systems and applications software and the steps used in their development. Applications refer to agents, applets, software, database, data warehouses, and knowledge-based systems. The applications may be used in distributed or centralized environments.

The candidate should fully understand the security and controls of the systems development process, system life cycle, application controls, change controls, data warehousing, data mining, knowledge-based systems, program interfaces, and concepts used to ensure data and application integrity, security, and availability.

5. EXPECTED KNOWLEDGE AREAS

· Application Issues

· Distributed Environment

· Agents

· Applets

· Active-X

· Java

· Objects

· Local/Non-distributed Environment

· Viruses

· Trojan Horses

· Logic Bombs

· Worms

· Databases and Data Warehousing

· Aggregation

· Data Mining

· Inference

· Polyinstantiation

· Multi-Level Security

· Data Base Management System (DBMS) Architecture

· Data/Information Storage

· Primary

· Secondary

· Real

· Virtual

· Random

· Volatile

· Sequential

· Knowledge-Based Systems

· Expert Systems

· Neural Networks

· System Development Controls

· System Development Life Cycle

· Conceptual Definition

· Functional Requirement Determination

· Protection Specifications Development

· Design Review

· Code Review or Walk-Through

· System Test Review

· Certification

· Accreditation

· Maintenance

· Security Control Architecture

· Process Isolation

· Hardware Segmentation

· Separation of Privilege

· Accountability

· Layering

· Abstraction

· Data Hiding

· System High

· Security Kernel

· Reference Monitor

· Modes of Operation

· Supervisor

· User

· Integration Levels

· Network/System

· Operating System

· Database

· File

· Service Level Agreement

· Malicous Code

· Definitions

· Jargon

· Myths/Hoaxes

· The concept of hackers, phreaks, and virus writers

· Anti-Viral protection

· Anti-Viral software

· Various types of computer viruses

· Multi-partite

· Macro

· Boot sector infectors

· Macintosh

· File Infectors

· Logic bombs

· Trojan Horses

· Active-X

· Java

· Trap Doors

· Method of attack

· Brute force or exhaustive attack

· Denial Of Service

· Dictionary Attacks

· Spoofing

· Pseudo flaw

· Alteration of authorized code

· Hidden code

· Logic bomb

· Trap door

· Interrupts

· Remote maintenance

· Browsing

· Inference

· Traffic analysis

· Flooding

· Cramming

· Time of Check/Time of User (TOC/TOU)

6. THE MEAT

Under this section you will find answers to most of the areas that you are required to know as a security professional. This guide only touches the surface and at time will point you to references to further enhance or develop your knowledge.

6.1 The CIA triad
The CIA triad is very important in all aspects of security. CIA stands for Confidentiality, Integrity, and Availability.

· Confidentiality (Sensitivity, secrecy)

· Integrity (accuracy, authenticity)

· Availability (fault tolerance, recovery)

CIA must be built into during the application/system design.

6.2 Application Issues

6.2.1 Distributed Environment

[ROTHKE]

“Decentralized” - connected or unconnected but related platforms running independent copies of software with independent copies of data

“Dispersed” - interconnected and related platforms running the same software and using the same data, one of which (data or software) is centralized

“Interoperable” or “Cooperative” - interconnected platforms running independent copies of software with independent copies of data

Combines processing from dissimilar platforms

Independently execute/test each component

Loose coupling
Weak dependencies between modules

High cohesion
modules perform discrete functions

Together, design supporting distributed systems
6.2.1.1 Agents

[ROTHKE]

Client/server local link to other areas of system, performs information preparation & exchange for client or server
6.2.1.2 Applets

Technically, only downloaded Java programs can truly be called applets. ActiveX programs are referred to as ActiveX controls.

[
"

http://www.itsecurity.com/glossndx.htm]

Commonly, any miniature application, especially as an enhancement to a web page involving the embedding a foreign type of program in the page. More particularly, a Java application that runs inside the sandbox.
6.2.1.2.1 Active-X

[WSC] ActiveX is a collection of technologies, protocols, and APIs developed by Microsoft that are used for downloading executable code over the Internet. The code is bundled into a single file called an ActiveX control. ActiveX controls can be digitally signed using Microsoft’s Authenticode technology. Internet Explorer can be configured to disregard any ActiveX control that isn’t signed, to run only ActiveX controls that have been signed by specific publishers, or to accept ActiveX controls signed by any registered software publisher.

ActiveX controls do not run in a sandbox. The burden is on the user to determine which ActiveX controls s/he feels are “safe” to run.

6.2.1.2.2 Java

[WSC] Java is a modern, object-oriented language that has a syntax similar to C++. It also has dynamic binding, garbage collection, and a simple inheritance model. Java is a general-purpose computer language and is not limited to writing web applications. The Java Virtual Machine (JVM) can be embedded in a web browser, allowing programs to be executed as they are downloaded from the World Wide Web. The JVM can execute the Java bytecode using an interpreter, or use a just-in-time compiler to convert the bytecode into native machine code. Java employs a variety of techniques to limit what a downloaded program can do. The main ones are the Java sandbox, Security Manager, Bytecode verifier, and the Java Class Loader.

6.2.1.3 Objects

[
"

http://www.acsac.org/secshelf/book001/glos.pdf
]

A passive entity that contains or receives information. Access to an object potentially implies access to the information it contains. Examples of objects are records, blocks, pages, segments, files, directories, directory trees, and programs, as well as bits, bytes, words fields, processors, video displays, keyboards, clocks, printers, and network nodes.

A controlled entity that precisely gives or receives information in response to access attempts by another (active) entity.

6.2.2 Local/Non-distributed Environment

6.2.2.1 Viruses

Code which spreads by modifying other programs. [HISM98] A program that, when executed, attempts to insert a copy of itself in another program, in order to perpetuate itself and spread its influence. Viruses exploit large populations of similar systems. To get themselves executed, viruses exploit the identity of the infected programs. Defenses against viruses include differentiating systems and placing limits on sharing, writing, and executing programs.

6.2.2.2 Trojan Horses

[
"

http://www.itsecurity.com/glossndx.htm]

Trojan Horse

A computer program that has a useful function, but which also contains additional (hidden) functions. The hidden functions may secretly exploit the legitimate authorizations of the invoking process to the detriment of the system's security; for example, by making a blind copy (BCC) of a sensitive file for the creator of the Trojan Horse. Other Trojan Horses are specifically designed to subvert a system's security mechanisms; see, for example, Back Orifice.

Trojan Horse File
Legend says that after a prolonged war between the Greeks and the Trojans, the Greeks finally surrendered, left behind a gift of truce, abandoned Troy and set off home. Their gift was a large wooden horse, which the Trojans accepted eagerly (despite the advice of their chief priest, who suspected a deception). The horse was larger than the city gates, which were duly demolished. The statue was wheeled in and the party commenced.

In fact, the Greeks had merely sailed around the closest headland to await nightfall. Also, a secret compartment inside the horse contained a select band of Greek fighters, who duly broke out under cover of darkness to initiate the slaughter. Their countrymen sailed back, piled in through the breached defenses and completed the rout. Troy was lost.

And that is why it is generally a bad idea to run a program, look at a document or use a spreadsheet that someone has sent you, especially if you do not know that person, or if you were not expecting them to send it to you. If it comes from an untrusted person, then it has untrusted content, whatever words of comfort they may offer you about it. Listen to the chief priest of the Trojans. Discard it.

Even if it seems to come from someone you trust, do not use it if you were not expecting it. There are viruses (see Library File) which send email attachments as if they were you, thus lulling recipients into a false sense of security. Don't feel bad about refusing files with programmatic content from your friends and colleagues. You can usually get the programs you need from your administrator instead of your friends, and you can ask to receive documents in RTF (see RTF) instead of accepting DOCs.

from Sophos' V-Files
6.2.2.3 Logic Bombs

[
"

http://www.acsac.org/secshelf/book001/glos.pdf
]

A resident computer program that triggers the perpetrations of an unauthorized act when particular states of the system are realized.

6.2.2.4 Worms

[
"

http://www.itsecurity.com/glossndx.htm]

Worm

A computer program that replicates itself and is self-propagating. Worms, as opposed to viruses, are meant to spawn in network environments. Network worms were first defined by Shoch & Hupp of Xerox in ACM Communications (March 1982).

See also Worm, The (Great) Internet.

Worm, The (Great) Internet

The Great Internet Worm was written by Robert Morris and released onto the Internet on 2 November 1988. It was designed to replicate - but by all accounts Morris did not expect it to cause the havoc that ensued. A bug caused it to replicate and re-infect much faster than anticipated.

When he realized what was happening, Morris actually tried to mitigate its effects. But by this time it was too late. The only medium capable of warning people, the Internet itself, had already been brought to its knees. About 10% of all Internet traffic had already been choked.

It was several days before solutions were found and disseminated, and the Internet got back to normal. And the effect? An estimated 6000 infected systems; many millions of dollars in costs; and three years probation, 400 hours community service and a fine of $10,000 for Morris.

6.3 Databases and Data Warehousing

6.3.1 Aggregation

Aggregation means different things depending on the context:

· In programming, it is a composition technique for building new object from 2 or more of the existing object that supports the new object’s required interface.

· In security related context, it is combining info from separate source on same object. By combining and aggregating the sensitivity level may become higher than individual parts. Aggregated data may require higher classification or protection.

You can also check this at

[http://csrc.nist.gov/publications/nistpubs/800-8/800-8.txt]

6.3.2 Data Mining

[http://whatis.techtarget.com/]

Data mining is the analysis of data for relationships that have not previously been discovered. For example, the sales records for a particular brand of tennis racket might, if sufficiently analyzed and related to other market data, reveal a seasonal correlation with the purchase by the same parties of golf equipment.

Data mining results include:

· Associations, or when one event can be correlated to another event (beer purchasers buy peanuts a certain percentage of the time)

· Sequences, or one event leading to another later event (a rug purchase followed by a purchase of curtains)

· Classification, or the recognition of patterns and a resulting new organization of data (for example, profiles of customers who make purchases)

· Clustering, or finding and visualizing groups of facts not previously known

· Forecasting, or simply discovering patterns in the data that can lead to predictions about the future

The data warehouse concept is gaining acceptance in part because of the possibility of fruitful data mining.
6.3.3 Garbage Collection

Process to reclaim dynamically allocated storage during program execution.

[http://whatis.techtarget.com/]
Garbage collecting is the recovery of pooled computer storage that is being used by a program when that program no longer needs the storage. This frees the storage for use by other programs (or processes within a program). It also ensures that a program using increasing amounts of pooled storage does not reach its quota (in which case it may no longer be able to function).

Some programming languages such as Java provide built-in garbage collecting so that the programmer does not have to write code for it.
6.3.4 Inference

[HISM98]

Data base security is primarily concerned with the secrecy of data. Secrecy means protecting a data base from unauthorized access by users and software applications.

Secrecy, in the context of data base security, includes a variety of threats incurred through unauthorized access. These threats range from the intentional theft or destruction of data to the acquisition of information through more subtle measures, such as inference. There are three generally accepted categories of secrecy-related problems in data base systems:

1. The improper release of information from reading data that was intentionally or accidentally accessed by unauthorized users. Securing data bases from unauthorized access is more difficult than controlling access to files managed by operating systems. This problem arises from the finer granularity that is used by data bases when handling files, attributes, and values. This type of problem also includes the violations to secrecy that result from the problem of inference, which is the deduction of unauthorized information from the observation of authorized information. Inference is one of the most difficult factors to control in any attempts to secure data. Because the information in a data base is semantically related, it is possible to determine the value of an attribute without accessing it directly. Inference problems are most serious in statistical data bases where users can trace back information on individual entities from the statistical aggregated data.

2. The improper modification of data. This threat includes violations of the security of data through mishandling and modifications by unauthorized users. These violations can result from errors, viruses, sabotage, or failures in the data that arise from access by unauthorized users.

3. Denial-of-service threats. Actions that could prevent users from using system resources or accessing data are among the most serious. This threat has been demonstrated to a significant degree recently with the SYN flooding attacks against network service providers.

6.3.5 Polyinstantiation
[ISMH00]

Unlike many current secure object oriented models, Secure Object-Oriented Data Base (SODA) allows the use of polyinstantiation as a solution to the multiparty update conflict. This problem arises when users with different security levels attempt to use the same information. The variety of clearances and sensitivities in a secure database system result in conflicts between the object that can be accessed and modified by the users.

Through the use of polyinstantiation, information is located in more that one location, usually with different security levels. Obviously, the more sensitive information is omitted from the instances with lower security levels.

Although polyinstantiation solves the multiparty update conflict problem, it raises a potentially greater problem in the form of ensuring the integrity of the data within the database. Without some method of simultaneously updating all occurrences of the data in the database, the integrity of the information quickly disappears. In essence, the system becomes a collection of several distinct systems, each with its own data.

"

http://www.cse.sc.edu/~farkas/csce790-2001/csce790-lect8.ppt

Entity polyinstantiantion: a relation contains multiple tuples with the sam primary keys but having different security levels of the primary keys.

Attribute polyinstationtion: a relation contains multiple tuples with the same primary keys at the same security levels but have different values for one or more attributes.

[ROTHKE]

Polyinstantiation

•Producing a more defined version of an object by iteratively replacing variables with other variables or values

•Information located in more than one location for use by more than one user, usually having different security levels

•Requires sensitive information to be removed when stored at lower levels

•Insuring integrity with multiple updates going on is difficult

You can also check this at

[http://csrc.nist.gov/publications/nistpubs/800-8/800-8.txt]

6.3.6 Multi-Level Security

[ISSAPR]

1. The mode of operation which allows two or more classification levels of information to be processed simultaneously with in the same system when some are not cleared for all levels of information present.

2 An operation under an operating system (supervisor or executive program) which provides a capability permitting various categories and types of classified materials to be stored and processed concurrently in an ADP system, and permitting selective access to such material concurrently by uncleared users having different security clearances and need-to-know is accordingly accomplished by the operating system and associated system software. In a remotely accessed resource-sharing system, the material can be selectively accessed and manipulated from variously controlled terminals by personnel having different security clearances and need-to-know. This mode of operation can accommodate the concurrent processing and storage of:

a) two or more levels of classified data, or

b) one or more levels of classified data with unclassified data upon constraints placed on the system by the DAA

6.3.7 Data Base Management System (DBMS) Architecture

6.4 Data/Information Storage

6.4.1 Primary

[HISM98] – Information in primary storage can be directly referenced or addressed. The instructions a computer will execute and the data it will operate on are stored in primary storage in order to be accessed. Arithmetic and logical operations can usually be performed directly on information in primary storage.

6.4.2 Secondary

[HISM98] Secondary storage includes magnetic disks and tapes. It may have mechanical as well as electronic components, but it is non-volatile. Instructions cannot be executed directly from secondary storage; the instructions and data operations kept in secondary storage must be moved to primary storage first. For security and audit reasons, some systems allow users to access data only at the abstract or symbolic level, not at the hardware level. In this case the user can only execute instructions that refer to the data by symbolic name.

6.4.3 Real

6.4.4 Virtual

[HISM98] Virtual storage is an abstraction which uses a combination of hardware address translation features, primary storage, and secondary storage to create the appearance of a large, exclusive primary storage. When a process stores data in an address, a page of real storage is allocated to the page in which the address is located. When a request is made to read the data, the address is translated to point to the page previously allocated to it. When the mechanism has no more real storage to allocate, it frees some by writing the contents to secondary (paging) storage. Virtual storage is a powerful mechanism for implementing process-to-process isolation within a computer. Because a request for data is always interpreted in the context of the local virtual store, there is no way for a process to address data that belongs to another process. Exchange of data between processes using two virtual memories requires their mutual cooperation.

6.4.5 Random

[HISM98] Random access memory refers to a class of memory in which any portion of the memory can be read from or written to with the same facility and in the same time as any other. Each access is independent of the previous one (as contrasted with sequential memory). RAM is the kind of memory employed for primary storage. Procedures stored in RAM are vulnerable to accidental and intentional change. Also contrasted with ROM which is typically used to hold stable procedures. Procedures stored on ROM are save from interference and contamination.

6.4.6 Volatile

[http://whatis.techtarget.com/]

In general, volatile (from the Latin "volatilis" meaning "to fly")is an adjective used to describe something unstable or changeable.

In computers, volatile is used to describe memory content that is lost when the power is interrupted or switched off. Your computer's ordinary memory (or RAM) is volatile memory.

Volatile memory contrasts with nonvolatile memory, memory that does not lose content when power is lost, that has a continuous source of power, or does not need to have its memory content periodically refreshed.
6.4.6 Sequential

6.5 Knowledge-Based Systems

6.5.1 Expert Systems

[http://whatis.techtarget.com/]

An expert system is a computer program that simulates the judgment and behavior of a human or an organization that has expert knowledge and experience in a particular field. Typically, such a system contains a knowledge base containing accumulated experience and a set of rules for applying the knowledge base to each particular situation that is described to the program. Sophisticated expert systems can be enhanced with additions to the knowledge base or to the set of rules.

Among the best-known expert systems have been those that play chess and that assist in medical diagnosis.

Also see (artificial intelligence).
6.5.2 Neural Networks

[ROTHKE}

Artificial Neural Network
Simple processors networked on a uni-directional communications channel that operate on local data and input from the connection

Able to learn from example and to generalize

6.6 System Development Controls

6.6.1 System Development Life Cycle

[ROTHKE} See slides available at www.cccure.org

You can also check this topic at

[http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf]
6.6.1.1 Conceptual Definition

Phases a software project goes through from conception to abandonment.

6.6.1.2 Functional Requirement Determination

6.6.1.3 Protection Specifications Development

6.6.1.4 Design Review

6.6.1.5 Code Review or Walk-Through

6.6.1.6 System Test Review

6.6.1.7 Certification

[http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-005.html]

Certification - the technical evaluation of a system's security features, made as part of and in support of the approval/accreditation process, that establishes the extent to which a particular system's design and implementation meet a set of specified security requirements.

6.6.1.8 Accreditation

[FIPS 800–14 http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf]

System security accreditation is the formal authorization by the accrediting (management) official for system operation and an explicit acceptance of risk. It is usually supported by a review of the system, including its management, operational, and technical controls.
6.6.1.9 Maintenance

[FIPS 800–14 http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf]

Operational/Maintenance Phase

During this phase, the system performs its work. The system is almost always being continuously modified by the addition of hardware and software and by numerous other events. The following high-level items should be considered during this phase:

Security Operations and Administration. Operation of a system involves many security activities discussed in this publication. Performing backups, holding training classes, managing cryptographic keys, keeping up with user administration and access privileges, and updating security software are some examples.

Operational Assurance. Operational assurance examines whether a system is operated according to its current security requirements. This includes both the actions of people who operate or use the system and the functioning of technical controls.

Audits and Monitoring. To maintain operational assurance, organizations use two basic methods: system audits and monitoring. These terms are used loosely within the computer security community and often overlap. A system audit is a one-time or periodic event to evaluate security. Monitoring refers to an ongoing activity that examines either the system or the users. In general, the more “ real-time” an activity is, the more it falls in the category of monitoring.
6.6.2 Security Control Architecture

[ROTHKE]

•Implementation and Operation

–All support personnel should be authorized

–All code should be reviewed prior to implementation

–Development staff should not review, implement systems

–Development staff should not support production data

–Development staff should not manage security function

–No access should be permitted directly to database

–Production data should be managed by users, not support staff

–All access to production data should be logged

–Access should be given to necessary data fields only

–Access controls should be used in addition to system access

–Configuration Management

6.6.2.1 Input Controls

Validity completeness, limit tests, logical checks; self-checking digits, control totals.

In the control total types you have transaction counts, $ total, crossfooting, hash totals, error detection, error correction, resubmission, label processing.

6.6.2.2 Output Controls

Reconciliation, physical handling procedures; authorization controls.

6.6.2.3 Transaction controls

Validity of transaction, limit controls, verification with expected results, audit trail.

6.6.2.4 Process Isolation

6.6.2.5 Hardware Segmentation

6.6.2.6 Separation of Privilege

[HISM98] http://secinf.net/info/misc/handbook/ewtoc.html
Separation of duties — This procedural control is intended to meet certain regulatory and audit system requirements by helping ensure that one single individual does not have total control over a programming process without appropriate review points or requiring other individuals to perform certain tasks within the process prior to final user acceptance. For example, someone other than the original developer would be responsible for loading the program to the production environment from a staging library.

6.6.2.7 Accountability

[http://www.acsac.org/secshelf/book001/glos.pdf]

Accountability: (1) Means of linking individuals to their interaction with an IT (information technology) product, thereby supporting identification of and recovery from unexpected or unavoidable failures of the control objectives. (2) The quality or state that enables actions on a ADP (automated data processing) system to be traced to individuals who may then be held responsible. These actions include violations and attempted violations of the security policy, as well as allowed actions. (3) The property that enables activities on a system to be traced to individuals who may then be held responsible for their actions.

6.6.2.7.1 Granularity

Fineness or coarseness of security control mechanism

[
"

http://www.acsac.org/secshelf/book001/glos.pdf]

Granularity (1) Relative fineness or coarseness to which an access control mechanism or other IT (information technology) product aspect can be adjusted. (2) An expression of the relative size of a data object. Note: Protection at the file level is considered to be finer granularity. The phrase “the granularity of a single user” means the access control mechanism can be adjusted to include or exclude any single user.

Granularity of a requirement: Determination of whether a requirement applies to all the attributes of users, subjects, or objects, and all TCB (trusted computing base) functional components.

6.6.2.7.2 Work Factor

Effort or time required overcoming protective measures

[ISSAPR] An estimate of the effort or time needed to overcome a protective measure by a potential penetrator with specified expertise and resources.

6.6.2.7.3 Assurance

Confidence in security features and architecture. Mediate and enforce security policy.

6.6.2.8 Layering

Layered approach to stand-alone system security includes access control (site, system, file levels), system support (power, backup, vigilance), and channel protection (channel control, channel verification, channel support)

6.6.2.9 Abstraction

6.6.2.10 Data Hiding

6.6.2.11 System High

[ISSAPR] System High Security Mode

The mode of operation in which system hardware / software is only trusted to provide need-to-know protection between users. In this mode, the entire system, to include all components electrically and /or physically connected, must operated with security measures commensurate with the highest classification and sensitivity of the information being processed and/or stored. All system users in this environment must possess clearances and authorizations for all information contained in the system. All system output must be clearly marked with the highest classification and all system caveats, until the information has been reviewed manually by an authorized individual to ensure appropriate classifications and caveats have been affixed (CSC-STD-003-85)

The mode of operation in which the computer system and all of its connected peripheral devices and remote terminals are protected in accordance with the requirements for the highest security level of material contained in the system at that time. All personnel having access to the Automated Information System have a security clearance but not a need-to-know for all material then contained in the system. (NCSC-WA-001-85)

6.6.2.12 Security Kernel

The hardware, firmware, operating system, software applications, and everything else of the trusted computing base that implements the reference monitor.

[
"

http://www.acsac.org/secshelf/book001/glos.pdf]

The hardware, firmware, and software elements of a trusted computing base (or network trusted computing base partition) that implement the reference monitor concept. It must mediate all accesses, be protected from modification, and be verifiable as correct.
6.6.2.13 Reference Monitor

A piece of software that mediates all accesses to objects by subjects. When some process makes an OS call, the reference monitor halts the process and figures out whether the call should be allowed or forbidden.

[http://www.acsac.org/secshelf/book001/glos.pdf]

An access control/mediation concept that refers to an abstract machine that mediates all accesses to objects by subjects

6.6.3 Modes of Operation

6.6.3.1 Supervisor

6.6.3.2 User

6.6.4 Integration Levels

6.6.4.1 Network/System

6.6.4.2 Operating System

6.6.4.3 Database

6.6.4.4 File

6.6.5 Service Level Agreement

6.7 Malicous Code

6.7.1 Definitions

Virus - code which spreads by modifying other programs. [HISM98] A program that, when executed, attempts to insert a copy of itself in another program, in order to perpetuate itself and spread its influence. Viruses exploit large populations of similar systems. To get themselves executed, viruses exploit the identity of the infected programs. Defenses against viruses include differentiating systems and placing limits on sharing, writing, and executing programs.

Worm – [HISM98] A program that attempts to copy itself in nearby execution environments. Worms are distinguished from viruses by the fact that they travel under their own identity. Worms exploit connectivity with nearby execution environments; therefore defenses against worms involve limiting connectivity by means of access controls.

6.7.2 Jargon

6.7.3 Myths/Hoaxes

6.7.4 The concept of hackers, phreaks, and virus writers

6.7.5 Anti-Viral protection

6.7.6 Anti-Viral software

6.7.7 Various types of computer viruses

6.7.7.1 Multi-partite

combination of boot sector and file infector virus, can spread using both methods

[HISM98] http://secinf.net/info/misc/handbook/445-448.html
Multipartite and Companion Viruses

You now know what boot sector and file infector viruses do. Put the two together and you have multipartite viruses, such as Tequila, which are capable of spreading by both methods. At the other end of the sophistication scale are companion viruses which take advantage of this simple fact about DOS: if you launch a program at the DOS prompt by entering its name, as in FORMAT, and DOS finds that there are two program files in the current directory, one called FORMAT.COM and the other called FORMAT.EXE, the COM file will be executed before the EXE file. A companion virus thus hides and spreads as a COM variant of a standard EXE file. Examples include the rare AIDS II and Clonewar viruses.

6.7.7.2 Macro

[HISM98] http://secinf.net/info/misc/handbook/448-450.html
Macro Viruses

Viruses do not need to be written in assembly code or a higher language such as C. They can be written using any instruction set. Ask anyone who has worked with macros in programs such as 1-2-3 or Excel, WordPerfect, or Word, and you will discover that these work just like a programming language. As macros evolved from their origins in the 1970s in word processing (storing multiple keystrokes under one key) to spreadsheets in the early 1980s (enabling complex menu branches of conditional commands) they acquired a vital ingredient for virus making, automatic execution.

6.7.7.3 Boot sector infectors

Most common on IBM type systems. Boot sector viruses alter the code stored in either the Master Boot Sector or the DOS Boot Sector, usually replacing the original contents with the virus code. Once loaded, the virus code generally loads the original boot code into memory and executes it.

[HISM98]
"

http://secinf.net/info/misc/handbook/443-445.html

This type of infection hits your computer just as it loads the operating system. Most common on IBM-compatible machines, boot sector viruses can also be created for other systems (the “first” virus was an Apple II boot sector virus). Boot sectors are what get the operating system loaded into memory after you power-up the system (cold boot), or perform a hard reset (usually using a button on the front of the machine). On IBM-compatible machines, the instructions stored in the BIOS, which cannot themselves be infected by a virus since they are burned into ROM (Read Only Memory), load information from the Master Boot Sector and DOS Boot Sector into RAM, after performing the POST (Power On Self Test) and reading data, such as the time, from CMOS (which can be corrupted by viruses).

According to Virus Bulletin’s description “boot sector viruses alter the code stored in either the Master Boot Sector or the DOS Boot Sector. Usually, the original contents of the boot sector are replaced by the virus code…. Once loaded, the virus code generally loads the original boot code into memory and executes it, so that as far as the user is concerned, nothing is amiss.” This might be accomplished by virus code in the boot sector that points to a different section of the disk. So the virus code is in memory and the user is none the wiser. The virus may then infect the boot sector of any floppy disk that is used in the machine’s floppy disk drive, thus passing the infection on. While this is rather clever, it would seem to be an inefficient means of replicating now that so many people boot from a hard disk. If everyone cleaned their hard disk boot sector it would appear that extermination of boot sector viruses would be achievable.

Unfortunately, this overlooks the fact that there are boot sectors on ALL floppy disks, not just those that are bootable system disks. And we have all made the mistake of turning on or resetting a system with a floppy in drive A. If the floppy disk is not bootable, for example, if it is a data or program installation disk, we get the “Non-System disk or disk error. Replace and strike any key when ready” message. Alas, at that point the boot sector virus is already in memory. Indeed, that message is read onto the screen from the boot sector. Taking the floppy out and pressing “any key” will not clear the virus from memory, and besides, it may have already infected the hard disk. Note that the Macintosh uses a combination of hardware design and operating system software to spit out floppy disks when booting, thus considerably reducing the chances of this type of infection.

Even without the Mac’s method of handling floppies, the solution appears quite simple: don’t leave floppies in drive A, and if you do get the Non-System error message, reset the system instead of pressing “any key” when you get the message. Better still, if you have a newer BIOS that allows you to adjust the drive boot sequence, tell it to boot from C before A (this still allows you boot from a floppy if something happens to drive C). Well-known boot sector viruses include Michelangelo, Monkey.B, and perhaps the most widely occurring viruses of all time, Stoned and Form.

While at first it sounds like you could only catch a boot sector virus from a floppy disk, the threat is slightly more complex thanks to the folks who enjoy placing boot sector viruses in Trojan horse or “bait” files and then uploading them to bulletin boards. These files are designed to place the boot sector virus on your system when you execute them (ironically, these programs accomplish this task with a routine known as a “dropper,” originally developed to allow the transfer of boot sector viruses between legitimate researchers and antivirus programmers).

6.7.7.4 Macintosh

6.7.7.5 File Infectors

Also known as parasitic viruses. They infect executable files, usually leaving the host program relatively unchanged. Virus code is prepended or appended to the host code, usually virus code is executed first.

6.7.8 Logic bombs

Code which is dormant until triggered by a predetermined time or event.

[ISSAPR] A resident computer program that, when executed, checks for particular conditions or particular states of the system which, when satisfied, triggers the perpetration of an unauthorized act.

6.7.9 Trojan Horses

Generic term describing a set of computer instructions hidden inside a useful program. [HISM98] A Trojan horse attack is one in which a hostile or unexpected entity is concealed inside a benign or expected one for the purpose of getting it through some protective barrier or perimeter. One defense against such attacks is inspection.

6.7.10 Active-X

[whatis.com] ActiveX is the name Microsoft has given to a set of "strategic" object-oriented programming technologies and tools. The main technology is the Component Object Model (COM). Used in a network with a directory and additional support, COM becomes the Distributed Component Object Model (DCOM). The main thing that you create when writing a program to run in the ActiveX environment is a component, a self-sufficient program that can be run anywhere in your ActiveX network (currently a network consisting of Windows and Macintosh systems). This component is known as an ActiveX control. ActiveX is Microsoft's answer to the Java technology from Sun Microsystems. An ActiveX control is roughly equivalent to a Java applet.

If you have a Windows operating system on your personal computer, you may notice a number of Windows files with the "OCX" file name suffix. OCX stands for "Object Linking and Embedding control." Object Linking and Embedding (OLE) was Microsoft's program technology for supporting compound documents such as the Windows desktop. The Component Object Model now takes in OLE as part of a larger concept. Microsoft now uses the term "ActiveX control" instead of "OCX" for the component object.

One of the main advantages of a component is that it can be re-used by many applications (referred to as component containers). A COM component object (ActiveX control) can be created using one of several languages or development tools, including C++ and Visual Basic, or PowerBuilder, or with scripting tools such as VBScript.

Currently, ActiveX controls run in Windows 95/98/NT/2000 and in Macintosh. Microsoft plans to support ActiveX controls for UNIX.

6.7.11 Java

[whatis.com] Java is a programming language expressly designed for use in the distributed environment of the Internet. It was designed to have the "look and feel" of the C++ language, but it is simpler to use than C++ and enforces an object-oriented programming model. Java can be used to create complete applications that may run on a single computer or be distributed among servers and clients in a network. It can also be used to build a small application module or applet for use as part of a Web page. Applets make it possible for a Web page user to interact with the page.

The major characteristics of Java are:

· The programs you create are portable in a network. (See portability.) Your source program is compiled into what Java calls bytecode, which can be run anywhere in a network on a server or client that has a Java virtual machine. The Java virtual machine interprets the bytecode into code that will run on the real computer hardware. This means that individual computer platform differences such as instruction lengths can be recognized and accommodated locally just as the program is being executed. Platform-specific versions of your program are no longer needed.

· The code is robust, here meaning that, unlike programs written in C++ and perhaps some other languages, the Java objects can contain no references to data external to themselves or other known objects. This ensures that an instruction can not contain the address of data storage in another application or in the operating system itself, either of which would cause the program and perhaps the operating system itself to terminate or "crash." The Java virtual machine makes a number of checks on each object to ensure integrity.

· Java is object-oriented, which means that, among other characteristics, an object can take advantage of being part of a class of objects and inherit code that is common to the class. Objects are thought of as "nouns" that a user might relate to rather than the traditional procedural "verbs." A method can be thought of as one of the object's capabilities or behaviors.

· In addition to being executed at the client rather than the server, a Java applet has other characteristics designed to make it run fast.

· Relative to C++, Java is easier to learn. (However, it is not a language you'll pick up in an evening!)

Java was introduced by Sun Microsystems in 1995 and instantly created a new sense of the interactive possibilities of the Web. Both of the major Web browsers include a Java virtual machine. Almost all major operating system developers (IBM, Microsoft, and others) have added Java compilers as part of their product offerings.

The Java virtual machine includes an optional just-in-time compiler that dynamically compiles bytecode into executable code as an alternative to interpreting one bytecode instruction at a time. In many cases, the dynamic JIT compilation is faster than the virtual machine interpretation. JavaScript should not be confused with Java. JavaScript, which originated at Netscape, is interpreted at a higher level, is easier to learn than Java, but lacks some of the portability of Java and the speed of bytecode. Because Java applets will run on almost any operating system without requiring recompilation and because Java has no operating system-unique extensions or variations, Java is generally regarded as the most strategic language in which to develop applications for the Web. (However, JavaScript can be useful for very small applications that run on the Web client or server.)

6.7.12 Trap Doors

A trap door is a hidden mechanism to bypass protection measures.

[ISSAPR] A hidden software or hardware mechanism that permits system protection mechanisms to be circumvented. It is activated in some innocent appearing manner, e.g., special “random” key sequence at a terminal. Software developers often introduce trap doors in their code that enable them to re-enter the system and perform certain functions (NCSC-WA-001-85)
6.7.13 Back Door (trap door or wormhole)

Security bypass left in by designers/maintainers.

Some OS have back door for privileged accounts for field service or vendor maintenance.

[ISMHV2] Backdoors are programs that bypass traditional security check on a system, allowing an attacker to gain access to a machine without providing a system password and getting logged. Attackers install backdoors on a machine (or dupe a user into installing one for them) to ensure they will be able to gain access to the system at a later time. Once installed, most backdoors listen on special ports for incoming connections from the attacker across the network. When the attacker connects to the backdoor listener, the traditional userID and password or other forms of authentication are bypassed. Instead, the attacker can gain access to the system without providing a password, or by using a special password used only to enter the backdoor.

6.7.14 Covert Channel

[ISSAPR] A communication channel that allows two cooperating processes to transfer information of an ADP system or activity to the realization of a threat.

[http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-005.html]

Covert channel - a communications channel that allows a process to transfer information in a manner that violates the system's security policy. A covert channel typically communicates by exploiting a mechanism not intended to be used for communication.
6.7.15 Covert Storage Channel

[ISSAPR] A covert channel that involves the direct or indirect writing of a storage location by one process and the direct or indirect reading of the storage location by another process. Covert channels typically involve a finite resource (e.g., sectors on a disk) that is shared by two subjects at different security levels.

6.7.16 Covert Timing Channel

[ISSAPR] A covert channel in which on e process signals information to another by modulating its own use of system resources (e.g. CPU time) in such a way that this manipulation affects the real response time observed by the second process.

6.8 Method of attack

6.8.1 Brute force or exhaustive attack

[HISM98] An exhaustive attack involves testing all possibilities in order to identify secret data such as a password. Exhaustive attacks almost always reveal the desired data (eventually) but are efficient only when the value of the data is greater than the cost of the attack. Defenses against exhaustive attacks involve increasing the cost of the attack by increasing the number of possibilities to be exhausted (e.g., increasing the length of a password or cryptographic key).

6.8.2 Denial Of Service

Includes TCP SYN flooding, ICMP Echo (Ping) flood.

The Ping of Death attack uses features of the Internet Control Message Protocol (ICMP) and the Maximum Transfer Unit (MTU) size of a network. A normal ping request issues an ICMP echo request and the host returns an ICMP echo reply enclosed in an IP packet. The MTU defines the maximum size of a unit for the network. If the packet is larger than the MTU, the packet is fragmented and reassembled at the destination using an offset value. An attacker can include a legal offset and a larger packetsize in the last fragment, prompting undefined behavior in the host.

The SMURF attack employs brute force, flooding the host with ICMP echo requests and replies. Generally the attacker spoofs a source IP address and then issues the ping request to a broadcast address, causing all the machines on an IP address segment to reply to the request. Sustained over time, this attack can block all legitimate traffic on the network.

The TCP SYN attack exploits the way that a TCP/IP network establishes a session. In a normal sequence, the client sends an IP packet with the SYN flag set to ON, and including a sequence number in the packet. Next, the server returns a packet with SYN ON, returning the sequence number incremented by 1. Finally, the client responds with another packet that again increments the sequence number by 1. A TCP SYN attack initiates multiple session requests originating from bogus IP addresses. Because it is a multi-step process, the server keeps each request in a queue for usually about 60 seconds, waiting to complete the process. This attack attempts to keep the queue filled so that legitimate requests are repeatedly denied.

6.8.3 Dictionary Attacks

[HISM98] Dictionary attacks are used to determine passwords. A short dictionary attack involves trying a list of words that are frequently chosen as passwords. Long dictionary attacks are used by insiders to expand their privileges, and involve encrypting a natural language dictionary under the encryption scheme used by the target system. Three conditions are necessary for success of a long dictionary attack: the attacker must be able to log onto the target system, must have read access to the password file, and must know the mechanism and key variable under which the passwords are encrypted.

6.8.4 Spoofing

Spoofing is used to defeat address-based authentication. Many services such as rlogin, rsh, rely on IP addresses for authentication. Ways to reduce: drop all outbound packets which do not have "inside" source address. Firewall should block all inbound packets that have internal address as source address.

[HISM98] In a spoofing attack a person or process pretends to be another person or process in order to gain privileges.

6.8.5 Pseudo flaw

[http://www.acsac.org/secshelf/book001/glos.pdf]

An apparent loophole deliberately implanted in an operating system program as a trap for intruders.

6.8.6 Alteration of authorized code

6.8.7 Hidden code

[ISSAPR] Programs may contain undocumented code that does things other than those described in the manuals. Poorly controlled maintenance often allows an opportunity for a programmer to insert a routine that should not be in the program. A program library and controls over maintenance may make this difficult or impossible.

6.8.8 Logic bomb

[ISSAPR] A resident computer program that, when executed, checks for particular conditions or particular states of the system which, when satisfied, triggers the perpetration of an unauthorized act.

6.8.9 Trap door

[ISSAPR] A hidden software or hardware mechanism that permits system protection mechanisms to be circumvented. It is activated in some innocent appearing manner, e.g., special “random” key sequence at a terminal. Software developers often introduce trapdoors in their code that enable them to re-enter the system and perform certain functions.

6.8.10 Interrupts

[ISSAPR] A penetrator may cause program or system interrupts; some operating systems allow a process to enter a privilege mode with more access than usual, while processing an interrupt.

6.8.11 Remote maintenance

6.8.12 Browsing

[HISM98] Browsing is the perusal of available data in an attempt to identify compromising information. It is the simplest type of attack. Example – searching primary storage for the system password table, browsing documentation to identify restrictions. Access control is the preferred defense against browsing attacks.

6.8.13 Inference

[HISM98] http://secinf.net/info/misc/handbook/621-623.html#Heading2
The improper release of information from reading data that was intentionally or accidentally accessed by unauthorized users. Securing data bases from unauthorized access is more difficult than controlling access to files managed by operating systems. This problem arises from the finer granularity that is used by data bases when handling files, attributes, and values. This type of problem also includes the violations to secrecy that result from the problem of inference, which is the deduction of unauthorized information from the observation of authorized information. Inference is one of the most difficult factors to control in any attempts to secure data. Because the information in a data base is semantically related, it is possible to determine the value of an attribute without accessing it directly. Inference problems are most serious in statistical data bases where users can trace back information on individual entities from the statistical aggregated data.
You can also check a discussion on inference at

[http://csrc.nist.gov/publications/nistpubs/800-8/800-8.txt]

6.8.14 Traffic analysis

[CSB p. 231] Analysis of data characteristics such as message length, frequency, and destination by an intruder. Such an analysis might allow an observer to infer information. Defenses: covert channel analysis, padding messages to disguise their actual characteristics, sending noise or spurious messages.

6.8.15 Flooding

[PU&IS] Message flooding occurs when a user slows down the processing of a system on the network to prevent the system from processing its normal workload, by “flooding” the machine with network messages addressed to it. These may be requests for file service or login, or they may be simple echo-back requests. Whatever the form, the flood of messages overwhelms the target so it spends most of its resources responding to the messages. In extreme cases, this flood may cause the machine to crash with errors or lack of memory to buffer the incoming packets. This attack denies access to a network server.

6.8.16 Cramming

[HUMOR] What NOT to do before the CISSP Exam! (
6.8.17 Time of Check/Time of Use (TOC/TOU)

[HISM98] Conditions that are checked and relied on but not otherwise bound can be maliciously changed between the time of check and time of use. This vulnerability can be reduced by increasing the number of checks, making them closer to the time of use, or by binding the condition so it cannot be altered. Binding is accomplished by fixing a meaning, property, or function so that subsequent changes are not supported.

[ISSAPR] The acronym TOC/TOU (Time of Check versus Time of User) often is used to describe a class of asynchronous attacks. The acronym TOCTOU also is used. In essence some control information, or perhaps merely the contents of a file, is changed between the time the systems security functions check the contents of variables (or access permissions to files) and the time the variables actually are used during operations. The Between-the-lines, NAK attack, various attacks involving interrupts, and line disconnect in the next list are more specific examples of this class of problem. Many systems have been vulnerable to TOC/TOU class of attacks during I/O processing.

7. GLOSSARY

Having a thorough dictionary available directly into this document would make the document too bulky. Instead I propose that you refer to some of the outstanding security glossaries that are available online. The following two are a good start:

The Jargon File: http://www.fwi.uva.nl/~mes/jargon/t/top-orig.html

The merged glossary: http://ise.gmu.edu/~csis/glossary/merged_glossary.html

RFC2828, Internet Security Glossary: http://www.landfield.com/rfcs/rfc2828.html

8. REFERENCES

The following documents were the primary references for this work:

AJP: M. Abrams, S. Jajodia, and H. Podell, eds, Information Security - An Integrated Collection of Essays, IEEE Computer Society Press, January 1995.

CSB: Russell, Deborah and G.T Gangemi Sr., Computer Security Basics. O’Reilly & Associates,: July 1992, ISBN: 0937175714.

HISM98: Krause, Micki and Harold F. Tipton, eds, Handbook of Information Security Management. CRC Press LLC, January 1998, ISBN: 0849399475. http://secinf.net/info/misc/handbook/ewtoc.html
ISSAPR: Fites, Philip E. and Kratz, Martin P. J., Information Systems Security A Practitioner’s Reference, 1993, ISBN 0-442-00180-0

ISMH00: Krause, Micki and Harold F. Tipton, eds, Information Security Management Handbook, 4th Edition. CRC Press - Auerbach Publications, January 2000, ISBN: 0849398290.

ISMHV2: Krause, Micki and Harold F. Tipton, eds, Information Security Management Handbook, 4th Edition. Volume 2. CRC Press - Auerbach Publications, January 2000, ISBN: 0849308003

PU&IS: Garfinkel, Simson and Spaffor, Gene Practical UNIX & Internet Security 2nd Edition. O’Reilly 1996 ISBN: 1565921488.

[ROTHKE] Ben Rothke’s CISSP CBK Review power point slides August 1999. www.cccure.org

WSC: Garfinkel, Simson with Gene Spafford, Web Security & Commerce. O’Reilly & Associates, June 1997, ISBN: 1565922697.

GREAT THINGS

ONE DAY MONTESQUIEU SAID:

To do great things

You do not have to be a genius.

You do not have to be better

and above people.

You have to be with them.

This is what

CCCure.Org�is all about

__

Version 1.0

Date: August 2001 Page 10

